首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ternary compound Sc2Fe3Si5 has attracted much attention because of the various anomalous physical properties. The specific heat experiment and energy band structure calculation suggest that Sc2Fe3Si5 is a two-gap superconductor. Based on this, we analyze the upper critical field for superconducting Sc2Fe3Si5 crystals using the two-band Ginzburg-Landau theory. A two-parameter variational approach is adopted to obtain the upper critical field in arbitrary direction. The temperature and angular dependences of the upper critical field are plotted. The results reproduce the experimental data in a very broad temperature range and strongly support previous specific heat data and theoretical calculation, pointing to the existence of two energy gaps in Sc2Fe3Si5. The anisotropy of the upper critical field is also studied and is about 2, in accordance with the experimental result. Moreover our calculations indicate that Sc2Fe3Si5 has rather a three-dimension character, in agreement with the energy band calculation.  相似文献   

2.
Single-crystal and polycrystalline samples of Sc4Ti3O12 have been shown to contain nanodomains (10–50 nm) with different degrees of ordering, coherent with the fluorite-like matrix. The oxygen-ion conductivity of this compound has been determined in the range 300–1000°C in air using impedance spectroscopy. The nanostructured single-crystal and polycrystalline samples are close in the activation energy for bulk conduction at both low and high temperatures: ?1.26 and 1.29 eV in the range 300–775°C, ?1.98 and 2.07 eV in the range 775–1000°C.  相似文献   

3.
0.25 at.% Er-doped Sc2O3 transparent ceramics fabricated using the two-step sintering method with different combinations of sintering temperatures were investigated by positron annihilation spectroscopy. Analysis of the broadening of the annihilation photopeak revealed the presence of the same type of defect in all samples. The lack of long lifetimes (τ ≥ 2 ns) suggested no positronium formation or the lack of trapping sites large enough to trap positronium for long enough time for the annihilation to be observed. Analysis of positron annihilation lifetime revealed the presence of a single lifetime that ranged from 208 to 219 ps, depending on the sintering conditions. These results also suggest the absence of a significant presence of vacancy clusters and other larger open-volume defects, and that the dominant open-volume defect corresponds to monovacancies and/or complex defects associated with monovacancies. The bulk lifetime of Er-doped scandia is estimated to be equal or lower than 208 ps.  相似文献   

4.
The structure of ZrO2 powders prepared by dehydration of zirconium hydroxide and milling (including techniques with the introduction of grinding additives, such as NaF, CaF2, diamond, and Cu) was investigated using x-ray powder diffraction and Raman spectroscopy. Samples containing crystallites with the smallest size were synthesized in the presence of copper additives. Ceramic powders of the composition Zr0.88Sc0.1Ce0.01Y0.01O1.955 with an improved quality for the use as solid electrolytes in fuel cells were prepared by the mechanochemical synthesis from nanoprecursors and then were characterized. An analysis of the X-ray powder diffraction patterns revealed that the symmetry of the structure of strongly aggregated nanopowders of metastable zirconia increases as a result of twinning, which is favored by a high concentration of vacancies.  相似文献   

5.
Special quasi-random structures (SQSs) with 32 atoms have been generated to model appropriate supercell structure of pseudo-binary random L12–Al3(Sc0.5TM0.5) (TM = Y, Ti, Zr, Hf, V, Nb and Ta) alloys. The optimized lattice parameters were in good agreement with the experimental data, and the obtained formation energies showed that all L12–Al3(Sc0.5TM0.5) alloys were stable from energetic point of view. As the atomic radius of substitution elements TM in the same Period decreased, the values of C 12 and C 44 for L12–Al3(Sc0.5TM0.5) alloys exhibited an overall tendency of increase, implying an enhanced Poisson effect and larger resistance to {100} 〈001〉 shear. The elastic isotropy of L12–Al3(Sc0.5TM0.5) alloys was overall lowered and the ductility could be improved. The calculated electronic structure demonstrated that below the Fermi level the hybridization of transition-metal d states with Al p states was reduced with decreasing of atomic radius of substitution elements TM in the same Period, which uncovered underlying mechanism for stability and elastic properties of L12–Al3(Sc0.5TM0.5) alloys.  相似文献   

6.
A novel microwave dielectric ceramics Bi(Sc1/3Mo2/3)O4 with low firing temperature were prepared via the solid reaction method. The specimens have been characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy and DC conductivity. The Bi(Sc1/3Mo2/3)O4 ceramics showed B-site ordered Scheelite-type structure with space group C2/c. Raman analysis indicated that prominent bands were attributed to the normal modes of vibration of MoO4 2? tetrahedra. The dielectric loss of Bi(Sc1/3Mo2/3)O4 ceramics can be depended strongly the bulk conductivity by DC measurement. The superior microwave dielectric properties are achieved in the Bi(Sc1/3Mo2/3)O4 ceramic sintered at 875 °C/4 h, with dielectric constant?~?25, Q?×?f ~?51,716 GHz at 6.4522 GHz and temperature coefficient of resonance frequency ~???70.4 ppm/°C. It is a promising microwave dielectric material for low-temperature co-fired ceramics technology.  相似文献   

7.
The structure of the Zr0.88 Sc0.1Ce0.01Y0.01O1.955 solid solution, a candidate for the use as a solid electrolyte in fuel cells with a low temperature, has been investigated using x-ray powder diffraction and Raman spectroscopy. Single-phase ceramic materials have been produced from powders prepared by the mechanochemical synthesis from ZrO2 nanoprecursors purified of the impurities introduced during grinding of commercial zirconia. The solid solution has a rhombohedral structure at room temperature owing to the partial ordering of oxygen vacancies. The electrical conductivity of the ceramic materials sintered at temperatures below 1570 K exhibits a hysteresis due to the delay of the martensitic transition from the cubic phase to the rhombohedral phase upon cooling of the sample. The nanostructured ceramic materials are characterized by a high mechanical strength and unusually close values of the activation energies for bulk and grain-boundary electrical conduction.  相似文献   

8.
We have studied the properties of nanocrystalline ZrO2-Y2O3-CeO2-CoO-Al2O3 powders prepared via hydrothermal treatment of a mixture of coprecipitated hydroxides at 210°C. A number of general trends are identified in the variation of the properties of the synthesized powders during heat treatment at temperatures from 500 to 1200°C. Our results demonstrate that the addition of 0.3 mol % CoO to nanocrystalline ZrO2-based powders containing 1 to 5 mol % Al2O3 allows one to obtain composites with good sinterability at a reduced temperature (1200°C).  相似文献   

9.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

10.
The solid electrolyte Zr0.88Sc0.12Y0.02O1.93 for reduced-temperature SOFCs has been characterized by Rietveld X-ray powder diffraction analysis and conductivity measurements in the temperature range 295–970 K. Gas-tight nanostructured ceramic composites consisting of cubic, rhombohedral, and monoclinic phases have been produced by reaction sintering of mechanochemically prepared powders. The oxygen ion conductivity of the ceramic prepared by sintering at 1630 K, with a relative density of 94%, is three times lower than that of ceramics fabricated from DKKK Zr0.89Sc0.1Ce0.01O1.95 powder, but raising the sintering temperature to 1670 K increases the density of the ceramic to 99%, and its conductivity reaches the level of the DKKK ceramics. The core-shell ceramic nanocomposite obtained in this study possesses high mechanical strength and a reduced activation energy for grain-boundary conduction.  相似文献   

11.
A quantum-mechanical calculation of the relative stability, structural parameters, and vibrational frequencies of V2O3 molecule isomers for different spin states was carried out using the BPW91/6-311+G(d, p) method. It was shown that the isomer with the C s structure (nonplanar VOVO rectangle with an O atom attached to it) in the X 5 A″ electronic state possesses the maximum stability. The energy of the C 2v symmetry structure was higher than the lowest energy by just 23 cm−1. It definitely indicated the impossibility of usage of the harmonic model in order to calculate the thermodynamic functions of V2O3 (g). A model is proposed based on which the energy levels and vibrational sums of states for this type of motion were calculated for the C s C 2v C s transition coordinate. These data, as well as results obtained from quantum-mechanical calculations, were used to calculate the thermodynamic functions of V2O3 (g) in the temperature range of T = 100–6000 K. The calculations were performed with the five excited electronic states with energies from 1000 to 9000 cm−1 taken into account. A comparison with the data calculated in the “rigid rotator-harmonic oscillator” approximation was performed.  相似文献   

12.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

13.
The structures of gismondine and amicite are analyzed in comparison with one another and with those of the zeolites whose compositions lie in the hypothetical plane “CaAl2Si3O10”-Na2Al2Si3O10-H2O. It is shown that the structures are similar to each other and may undergo mutual transformations.  相似文献   

14.
New solid solutions, Bi2?x?y Tm x Nb y O3+δ, with tetragonal and cubic structures have been synthesized in the Bi2O3-Tm2O3-Nb2O5 system, and their electrical conductivity has been measured at temperatures from 670 to 1020 K. The 1020-K conductivity of the tetragonal solid solution Bi1.8Tm0.15Nb0.05O3+δ is comparable to that of Bi1.75Tm0.25O3, the best conductor in the Bi2O3-Tm2O3 system.  相似文献   

15.
We have measured the thermal conductivity of Bi2Te3-Sb2Te3-Gd2Te3 solid solutions at temperatures from ~80 to 300 K and have determined the electronic and lattice components of their total thermal conductivity and the contributions of Sb2Te3 and Gd2Te3 to their thermal resistance. The results indicate that heat in these materials is transported largely by phonons and that three-phonon processes play a key role in determining the lattice thermal conductivity of the solid solutions.  相似文献   

16.
Reactions of vanadium, niobium, and tantalum pentoxides with aluminum nitride have been studied using X-ray diffraction. At temperatures from 1000 to 1600°C, we have identified various V, Nb, and Ta nitrides. The composition of the niobium and tantalum nitrides depends on the reaction temperature. The tendency toward nitride formation becomes stronger in the order V2O5 < Ta2O5 < Nb2O5.  相似文献   

17.
The oxygen-ion conductivity of porous materials, the coarse-grained pyrochlore-like Sm2Ti2O7 and fine-grained Sm2TiO5 compounds, produced by mechanical activation of initial oxides is studied at 400–1000 °C. The Sm2TiO5 samples contain ~15 wt % of the nanosized pyrochlore-like Sm2TiO5 phase in addition to the rhombic phase. As determined by impedance spectroscopy, the ionic conductivities of Sm2TiO5 and Sm2Ti2O7 at 1000°C are 1.3 × 10?3 and 1.8 × 10?4 S cm?1, and the activation energies of the bulk and grainboundary conductivities of the materials are 1.04 and 1.24 eV for Sm2TiO5 and 1.69 and 1.80 eV for Sm2Ti2O7.  相似文献   

18.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

19.
The structure of three compounds in the Cu2Se-In2Se3-Cr2Se3 system near CuInCr2Se5 is determined by single-crystal x-ray diffraction: CuInCr4Se8 (I), Cu2In2Se4 (II), and Cu0.5In0.5Se (III). I has a cubic (spinel type) structure: a = 10.606(4) Å, Z = 4, sp. gr. F43m. II has a pseudotetragonal (sphalerite type) structure: a = 5.774(2) Å, c = 11.617(6) Å. The structure of II was solved in a reduced unit cell with a = 5.774(2) Å, b = 5.774(2) Å, c = 7.095(6) Å, = 113.95(5)°, = 113.95(5)°, = 90.00(4)°, Z = 1, sp. gr. P1. III has a triclinic cell (disordered structure of II): a = 4.088(1) Å, b = 4.091(2) Å, c = 4.101(1) Å, = 60.05(1)°, = 60.08(1)°, = 89.98(4)°, Z = 1, sp. gr. P1. The Cu and In atoms in I sit in inequivalent tetrahedral sites, and the Cr atoms reside in octahedral interstices of the close packing of Se atoms. The bond lengths are In–Se = 2.538(6), Cr(1)–Se(1) = 2.514(7), Cr(1)–Se(2) = 2.576(8), and Cu–Se = 2.437(5) Å. In II, all of the atoms sit in tetrahedral sites; the mean bond lengths are In–Se = 2.578(6) and Cu–Se = 2.44(1) Å. In III, the Cu and In atoms are fully disordered in the same tetrahedral site; the mean Cu(In)–Se bond length is 2.508(6) Å.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1435–1439.Original Russian Text Copyright © 2004 by Antsyshkina, Sadikov, Koneshova, Sergienko.  相似文献   

20.
The Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates have been prepared by solid-state reactions in several sequential firing steps in the temperature range 1237–1473 K using stoichiometric mixtures of Dy2O3 (or Ho2O3) and GeO2. The heat capacity of the synthesized germanates has been determined as a function of temperature by differential scanning calorimetry in the range 350–1000 K. The experimentally determined C p (T) curves of the dysprosium and holmium germanates have no anomalies and are well represented by the Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of the Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates: enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号