首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma  W. 《Electronics letters》1991,27(3):201-202
The algorithm and architecture of a 2-D systolic array processor for the DCT (discrete cosine transform) are proposed. It is based on the relationship between DCT and cosine DFT and sine DFT. Two systolic architectures of 1-D DCT data and control flow computation are discussed. By use of the main feature of the two systolic 1-D arrays for DCT, a full 2-D systolic DCT array is presented.<>  相似文献   

2.
A new fast algorithm for the type-II two-dimensional (2-D) discrete cosine transform (DCT) is presented. It shows that the 2-D DCT can be decomposed into cosine-cosine, cosine-sine, sine-cosine, and sine-sine sequences that can be further decomposed into a number of similar sequences. Compared with other reported algorithms, the proposed one achieves savings on the number of arithmetic operations and has a recursive computational structure that leads to a simplification of the input/output indexing process. Furthermore, the new algorithm supports transform sizes (p1*2m1)×(p2*2 m2), where p1 and p2 are arbitrarily odd integers, which provides a wider range of choices on transform sizes for various applications  相似文献   

3.
A direct method for the computation of 2-D DCT/IDCT on a linear-array architecture is presented. The 2-D DCT/IDCT is first converted into its corresponding I-D DCT/IDCT problem through proper input/output index reordering. Then, a new coefficient matrix factorisation is derived, leading to a cascade of several basic computation blocks. Unlike other previously proposed high-speed 2-D N /spl times/ N DCT/IDCT processors that usually require intermediate transpose memory and have computation complexity O(N/sup 3/), the proposed hardware-efficient architecture with distributed memory structure has computation complexity O(N/sup 2/ log/sub 2/ N) and requires only log/sub 2/ N multipliers. The new pipelinable and scalable 2-D DCT/IDCT processor uses storage elements local to the processing elements and thus does not require any address generation hardware or global memory-to-array routing.  相似文献   

4.
New polynomial transform algorithm for multidimensional DCT   总被引:3,自引:0,他引:3  
A new algorithm for the type-II multidimensional discrete cosine transform (MD-DCT) is proposed. Based on the polynomial transform, the rD-DCT with size N1×N2×···×N r, where Ni is a power of 2, can be converted into a series of one dimensional (1-D) discrete cosine transforms (DCTs). The algorithm achieves considerable savings on the number of operations compared with the row-column method. For example, the number of multiplications for computing an r-dimensional DCT is only 1/r times that needed by the row-column method, and the number of additions is also reduced. Compared with other known polynomial transform algorithms for MD-DCT and the most recently presented algorithm for MD-DCT, the proposed one uses about the same number of operations. However, advantages such as better computational structure and flexibility in the choice of dimensional sizes can be achieved  相似文献   

5.
In this paper, new recursive structures for computing radix-r two-dimensional (2-D) discrete cosine transform (DCT) and 2-D inverse DCT (IDCT) are proposed. The 2-D DCT/IDCT are first decomposed into cosine-cosine and sine-sine transforms. Based on indexes of transform bases, the regular pre-addition preprocess is established and the recursive structures for 2-D DCT/IDCT, which can be realized in a second-order infinite-impulse response (IIR) filter, are derived without involving any transposition procedure. For computation of 2-D DCT/IDCT, the recursive loops of the proposed structures are less than that of one-dimensional DCT/IDCT recursive structures, which require data transposition to achieve the so-called row-column approach. With advantages of fewer recursive loops and no transposition, the proposed recursive structures achieve more accurate results and less power consumption than the existed methods. The regular and modular properties are suitable for very large-scale integration (VLSI) implementation. By using similar procedures, the recursive structures for 2-D DST and 2-D IDST are also proposed.  相似文献   

6.
Several parallel, pipelined and folded architectures with different throughput rates are presented for computation of DCT, one of the fundamental operations in image/video coding. This paper begins with a new decomposition algorithm for the 1-D DCT coefficient matrix. Then the 2-D DCT problem is converted into the corresponding 1-D counterpart through a regular index mapping technique. Afterward, depending on the trade-off between hardware complexity and speed performance, the derived decomposition algorithm is transformed into different parallel-pipelined and folded architectures that realize the butterfly operations and the post-processing operations. Compared to other DCT processor, our proposed parallel-pipelined architectures, without any intermediate transpose memory, have the features of modularity, regularity, locality, scalability, and pipelinability, with arithmetic hardware cost proportional to the logarithm of the transform length.  相似文献   

7.
A fast algorithm for computing multidimensional DCT on certain small sizes   总被引:2,自引:0,他引:2  
This paper presents a new algorithm for the fast computation of multidimensional (m-D) discrete cosine transform (DCT) with size N/sub 1//spl times/N/sub 2//spl times//spl middot//spl middot//spl middot//spl times/N/sub m/, where N/sub i/ is a power of 2 and N/sub i//spl les/256, by using the tensor product decomposition of the transform matrix. It is shown that the m-D DCT or inverse discrete cosine transform (IDCT) on these small sizes can be computed using only one-dimensional (1-D) DCTs and additions and shifts. If all the dimensional sizes are the same, the total number of multiplications required for the algorithm is only 1/m times of that required for the conventional row-column method. We also introduce approaches for computing scaled DCTs in which the number of multiplications is considerably reduced.  相似文献   

8.
Mixed-radix discrete cosine transform   总被引:1,自引:0,他引:1  
Presents two new fast discrete cosine transform computation algorithms: a radix-3 and a radix-6 algorithm. These two new algorithms are superior to the conventional radix-3 algorithm as they (i) require less computational complexity in terms of the number of multiplications per point, (ii) provide a wider choice of the sequence length for which the DCT can be realized and, (iii) support the prime factor-decomposed computation algorithm to realize the 2m3n-point DCT. Furthermore, a mixed-radix algorithm is also proposed such that an optimal performance can be achieved by applying the proposed radix-3 and radix-6 and the well-developed radix-2 decomposition techniques in a proper sequence  相似文献   

9.
A classification algorithm in the discrete cosine transform (DCT) domain for the classified vector quantization (CVQ) technique is proposed. The classifier employs four DCT coefficients of 4×4 subblock as edge-oriented features. The classifier is designed using a cluster-seeking algorithm to ensure that the centroid of a set of vectors in a class always belong to that class. Since the classification is performed in the DCT domain, this approach can be easily extended to the DCT transform coding technique. Simulation results show that a good visual quality of the coded image at fixed rates in the 0.625-0.813 b/pixel (bpp) range is obtained with comparable complexity. The weighted MSE (WMSE) analysis in conjunction with the proposed classifier is discussed  相似文献   

10.
This investigation proposes a novel radix-42 algorithm with the low computational complexity of a radix-16 algorithm but the lower hardware requirement of a radix-4 algorithm. The proposed pipeline radix-42 single delay feedback path (R42SDF) architecture adopts a multiplierless radix-4 butterfly structure, based on the specific linear mapping of common factor algorithm (CFA), to support both 256-point fast Fourier transform/inverse fast Fourier transform (FFT/IFFT) and 8times8 2D discrete cosine transform (DCT) modes following with the high efficient feedback shift registers architecture. The segment shift register (SSR) and overturn shift register (OSR) structure are adopted to minimize the register cost for the input re-ordering and post computation operations in the 8times8 2D DCT mode, respectively. Moreover, the retrenched constant multiplier and eight-folded complex multiplier structures are adopted to decrease the multiplier cost and the coefficient ROM size with the complex conjugate symmetry rule and subexpression elimination technology. To further decrease the chip cost, a finite wordlength analysis is provided to indicate that the proposed architecture only requires a 13-bit internal wordlength to achieve 40-dB signal-to-noise ratio (SNR) performance in 256-point FFT/IFFT modes and high digital video (DV) compression quality in 8 times 8 2D DCT mode. The comprehensive comparison results indicate that the proposed cost effective reconfigurable design has the smallest hardware requirement and largest hardware utilization among the tested architectures for the FFT/IFFT computation, and thus has the highest cost efficiency. The derivation and chip implementation results show that the proposed pipeline 256-point FFT/IFFT/2D DCT triple-mode chip consumes 22.37 mW at 100 MHz at 1.2-V supply voltage in TSMC 0.13-mum CMOS process, which is very appropriate for the RSoCs IP of next-generation handheld devices.  相似文献   

11.
本文介绍了二维离散余弦变换(DCT)的一种新的快速算法。对于NN DCT(N=2m),只需用N个一维DCT和若干加法运算。与常规的行-列法相比,所需的乘法运算量减少了一半,也比其它的快速算法的乘法运算量要少,而加法运算量基本上是相同的。  相似文献   

12.
二维DCT算法及其精简的VLSI设计   总被引:1,自引:1,他引:0  
采用了快速算法,并通过矩阵的变化,得到了一维离散余弦变换(Discrete Cosine Transform,DCT)的一种快速实现,并由此提出一种精简的超大规模集成电路(Very-large-scale integration,VLSI)设计架构.使用了一维DCT的复用技术,带符号数的乘法器设计等技术,实现了二维DCT算法的精简的VLSI设计.实验结果表明,所设计的二维DCT设计有效,并能够获得非常精简的电路设计.  相似文献   

13.
The discrete cosine transform (DCT) and the discrete sine transform (DST) have found wide applications in speech and image processing, as well as telecommunication signal processing for the purpose of data compression, feature extraction, image reconstruction, and filtering. In this paper, we present new recursive algorithms for the DCT and the DST. The proposed method is based on certain recursive properties of the DCT coefficient matrix, and can be generalized to design recursive algorithms for the 2-D DCT and the 2-D DST. These new structured recursive algorithms are able to decompose the DCT and the DST into two balanced lower-order subproblems in comparison to previous research works. Therefore, when converting our algorithms into hardware implementations, we require fewer hardware components than other recursive algorithms. Finally, we propose two parallel algorithms for accelerating the computation  相似文献   

14.
Two systems are presented for compression of hyperspectral imagery which utilize trellis coded quantization (TCQ). Specifically, the first system uses TCQ to encode transform coefficients resulting from the application of an 8×8×8 discrete cosine transform (DCT). The second systems uses DPCM to spectrally decorrelate the data, while a 2D DCT coding scheme is used for spatial decorrelation. Side information and rate allocation strategies are discussed. Entropy-constrained code-books are designed using a modified version of the generalized Lloyd algorithm. These entropy constrained systems achieve compression ratios of greater than 70:1 with average PSNRs of the coded hyperspectral sequences exceeding 40.0 dB  相似文献   

15.
In this paper, a new algorithm for the fast computation of a 2-D discrete cosine transform (DCT) is presented. It is shown that the N×N DCT, where N = 2m, can be computed using only N 1-D DCT's and additions, instead of using 2N 1-D DCT's as in the conventional row-column approach. Hence the total number of multiplications for the proposed algorithm is only half of that required for the row-column approach, and is also less than that of most of other fast algorithms, while the number of additions is almost comparable to that of others.  相似文献   

16.
An efficient implementation of discrete cosine transform (DCT) computations are presented based on the so-called shifted discrete Fourier transform (SDFT), a generalization of the conventional DFT (DFT). Due to the simple form of the factorized matrices, the derived architecture can be easily constructed from the cascade of only two types of parameterized hardware modules: butterfly operators and rotators. The butterfly operator performs the conventional butterfly shuffling and addition/subtraction. The rotator that performs plane rotations of two-dimensional (2-D) vectors is designed using carry-save-adder (CSA)-based unfolded pipelined CORDIC architecture where the rotation angles can be approximated with different accuracies using a sequence of bipolar signs. The proposed one-dimensional and 2-D DCT implementations composed of the above two types of parameterized modules can be used as flexible and reusable Silicon Intellectual Property (SIP) for the DCT computation unit to be embedded in system-on-a-chip (SoC) design. The proposed implementations have many features and advantages, including SIP reusability, low complexity, high-throughput, regularity, scalability (easy extension of transform length), and flexibility (approximated DCT with various accuracies).  相似文献   

17.
The type-II r-dimensional discrete W transform (rD-DWT-II) with size ql1×ql2 ×···×lr q where q is an odd prime number, is converted into a series of one-dimensional (1-D) reduced DWT-IIs by using the multidimensional polynomial transform and an index permutation. Then, a radix-q algorithm and a cyclic convolution algorithm are presented for the computation of the 1-D reduced DWT-IIs. The new fast algorithm substantially reduces the overall computational complexity compared with the row-column method. Especially, the number of multiplications required by the proposed algorithm for computing an rD-DWT-II is only 1/r times that needed by the commonly used row-column method  相似文献   

18.
An efficient algorithm is presented for computing the two-dimensional discrete cosine transform (2-D DCT) whose size is a power of a prime. Based on a generalised 2-D to one-dimensional (1-D) index mapping scheme, the proposed algorithm decomposes the 2-D DCT outputs into three parts. The first part forms a 2D DCT of a smaller size. The remaining outputs are further decomposed into two parts, depending on the summation of their indices. The latter two parts can be reformulated as a set of circular correlation (CC) or skew-circular correlation (SCC) matrix-vector products by utilising the previously addressed maximum coset decomposition. Such a decomposition procedure can be repetitively carried out for the 2-D DCT of the first part, resulting in a sequence of CC and SCC matrix-vector products of various sizes. Employing fast algorithms for the computation of these CC/SCC operations can substantially reduce the numbers of multiplications compared with those of the conventional row-column decomposition approach. In the special case where the data size is a power of two, the proposed algorithm can be further simplified, calling for computations comparable with those of previous works  相似文献   

19.
In this paper we present a low complexity discrete cosine transform (DCT) architecture based on computation re-use in vector-scalar product. 1-D DCT operation is expressed as additions of vector-scalar products and basic common computations are identified and shared to reduce computational complexity in 1-D DCT operation. Compared to general distributed arithmetic based DCT architecture, the proposed DCT shows 38% of area and 18% of power savings with little performance degradation. We also propose an efficient method to trade off image quality for computational complexity. The approach is based on the modification of DCT bases in bit-wise manner and different computational complexity/image quality trade-off levels are suggested. Finally, based on the above approaches, we propose a low complexity DCT architecture, which can dynamically reconfigure from one trade-off level to another. The reconfigurable DCT architecture can achieve power savings ranging from 28% to 56% for 3 different trade-off levels.
Kaushik RoyEmail:
  相似文献   

20.
为提高编码效率,通过分析残差系数在空域和DCT域均符合拉普拉斯分布后,提出一种快速DCT算法.该算法能够在DCT之前对每个量化DCT系数进行零值预判而节省DCT计算.通过头肩序列的实验表明新算法在不降低图像质量的条件下,其整体运算复杂度优于常规算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号