共查询到20条相似文献,搜索用时 15 毫秒
1.
阴影检测是进行阴影处理前的重要步骤,总变分模型可以用于影像阴影检测.通过对总变分模型进行改进,提出了一种基于无约束总变分模型的阴影检测方法.经实验及统计分析证明,在合适的迭代条件下,该方法对于单一阴影影像的处理效果理想. 相似文献
2.
针对表面肌电信号易受无关噪声影响的问题,分别利用变分模态分解(Variational Mode Decomposition,VMD)、小波阈值法、VMD与小波阈值结合的方法对表面肌电信号进行伪迹去除。将信噪比、均方误差、自相关系数作为评价指标,对3种去噪方法进行对比分析。比较结果表明:3种方法对噪声信号均具有分离效果,但VMD与小波阈值相结合的方法分离效果更好、稳定性更高、信噪比最大、均方误差最小、自相关系数最高,具有良好的应用前景。 相似文献
3.
基于改进SUSAN算子的图像边缘检测算法 总被引:2,自引:0,他引:2
罗忠亮 《重庆理工大学学报(自然科学版)》2009,23(5):102-106
首先介绍了SUSAN边缘检测算子的原理;然后对算法中灰度差阈值的选择方式进行了改进,采用一种自适应选取阈值的方法取代算法中人为的设定阈值,使其在各种不同对比度的图像中都能正确提取出图像边缘;最后运用该算法进行了图像边缘检测测试,并与其他检测算子进行比较.实验结果表明,该算法具有方法简单、抗噪能力强、计算量小等优点. 相似文献
4.
将变分水平集和图像阀值化两种图像分割方法相结合,在分析灰度图像直方图分布的基础上提出利用图像阈值设定C-V模型的初始化轮廓的新方法,改变了原有C-V模型的初始轮廓线设置中存在的不足.新方法应用于牙菌斑图像分割中能够较好的识别牙齿图像边缘信息,为下一步对牙菌斑进行量化分析提供了良好的数据基础. 相似文献
5.
现有的用于视频运动目标检测的鲁棒主成分分析方法通常将背景矩阵的秩函数松弛为核范数,导致求解低秩矩阵的奇异值收缩算子法的阈值恒定,从而背景恢复精度不高。为此提出由加权核范数和结构稀疏范数组成的新的损失函数并用交替方向乘子法进行优化。采用加权核范数作为矩阵的低秩约束,使得压缩阈值与相应奇异值的大小呈单调递减关系,从而大奇异值得以较小幅度压缩。使用结构稀疏范数作为前景稀疏约束,有效利用了前景运动目标的空间区域连续性的先验知识。实验结果表明,该方法在动态背景、阴影等复杂场景下均能取得较其他鲁棒主成分分析方法更好的效果。 相似文献
6.
对微电网线路故障的高效检测有助于快速切除故障,降低微电网对大电网的影响。现有的故障检测方法存在阈值难以选择、对高过渡电阻故障不敏感等问题,为此提出了基于极大重叠离散小波变换(MODWT)系数突变的自适应阈值选取故障检测算法。利用MODWT的特性,采用扩大窗的方法,在窗扩大的过程中对MODWT系数差值的阈值进行适应性调整。相较于现有的定阈值方法,该算法可以适应任意长度的数据样本对于多种故障状态可以进行适应性阈值调整,因此对高过渡电阻故障有较高的敏感度。通过仿真实验验证,该算法能在各种故障状态下快速检测故障发生的时间。 相似文献
7.
针对复杂交通场景中运动车辆检测方法存在的局限性,本文提出了一种基于中值模型和自适应阈值的运动检测算法。利用自适应阈值对差分图像的三个颜色通道进行二值化处理,实现了运动目标的精确检测,采用中值更新策略实现背景图像的实时更新。实验结果表明,算法可以从复杂交通场景图像序列中有效地检测出运动目标,且算法计算量小,具有良好的鲁棒性与实时性。 相似文献
8.
以人工神经网络(ANN)模型为基础,通过与量子并行计算、量子门线路以及变分量子线路等量子理论与量子力学概念相结合提出了一种优化的变分量子神经网络(VQNN)模型,该模型是由可在噪声中尺度量子(NISQ)设备上运行的量子线路结合机器学习(ML)策略构成的一种量子经典混合计算模型。其中量子线路由两部分组成:量子态编码线路用于将经典数据编码为量子态数据;变分量子线路(VQC)则学习目标状态并将信息编码到一个真实的量子数据结构之中。最终通过测量VQC量子态输出获得经典概率输出分布,利用经典计算机进行变分量子线路的参数优化处理,这种结构使得VQC与经典ML很容易地融合。进一步探索了使用VQNN来建立基于实际应用的分类器,将其应用在网络攻击检测领域。实验结果表明,对于KDD CUP99数据集,VQNN具有相对较高的检测性能,且均高于其他经典对比检测模型以及量子门线路神经网络模型。此外,该VQNN可以部署在近期绝大多数的NISQ设备中。同时,所提出的VQNN是首个可以部署在NISQ中进行网络攻击检测的模型。 相似文献
9.
针对核主成分分析(KPCA)和主成分分析(PCA)的一些不足,提出一种基于集成主成分分析的故障检测方法。该方法将PCA与KPCA结合,利用KPCA描述过程的非线性信息并提取核主成分,再利用PCA对原始信息和核主成分一同提取线性主成分,通过构造统计量T2和SPE(或Q)进行故障检测。在TE(Tennessee-Eastman)过程上的仿真研究表明,本文提出的方法较PCA和KPCA有更高的故障检测精度。 相似文献
10.
曹春梅 《河南工程学院学报(自然科学版)》2023,(2):63-69+80
针对现有网络流量入侵检测查准率低的问题,提出了一种基于改进变分自动编码器的入侵检测方法,先在变分自动编码器上增加判别器实现网络流量的入侵检测,之后在CICIDS2017数据集上对所提方法进行验证。结果表明,所提方法对正常流量与异常流量检测的平均查准率、召回率、F1值均达到87%以上,且平均AUC值达90%。相较于CE-SAE模型和传统变分自动编码器,所提方法在各项指标上的表现更好,具有明显优势。 相似文献
11.
利用小波变换的特点,设计了3次B样条平滑滤波算子。对图像进行多尺度滤波,得到了不同尺度的小波变换。结合自适应阈值方法,在每种尺度下分别提取了图像边缘;而后利用边缘信息的多尺度特性,综合多尺度边缘得到单像素宽边缘。通过计算机仿真对该方法进行验证表明:该方法不仅能准确检测出图像边缘,而且能有效地抑制噪声,明显优于已有的边缘检测方法。 相似文献
12.
构造了一类新的含相对松驰Lipschitz连续算子的广义变分不等式 ,给出了其解的一个存在性定理 ,提供了一个求其近似解的迭代算法 ,并证明了该算法的收敛性 ,推广了近期出现的多个结果。 相似文献
13.
《延边大学学报(自然科学版)》2017,(1):37-42
提出了一种基于梯度阈值和特征抑制的光流运动目标检测算法.首先将LK光流法和HS光流法思想进行互补,在梯度值较大的点使用亮度约束,梯度值较小的点使用平滑约束;然后采用特征抑制方法,筛选能够确定运动目标位置的光流点;最后检测出完整的运动目标.实验结果表明,本文算法提高了运动目标检测的准确度,而且实时性较好. 相似文献
14.
为解决GPS/INS组合导航的数据融合问题中卡尔曼滤波器因噪声统计特性会发生变化而性能严重退化的问题,针对组合导航的系统模型提出并推导了一种基于变分贝叶斯学习的自适应卡尔曼滤波算法。该方法从概率角度将系统状态与噪声的统计矩一起作为待估计的随机变量,在每次递推地对状态进行估计之前,用变分贝叶斯学习迭代逼近得到噪声的后验分布。仿真结果证明:在组合导航系统中,该自适应算法能够较好地跟踪变化的噪声方差,并对速度、位置等系统状态进行估计。 相似文献
15.
为了在森林复杂背景下准确地检测出红外小目标,提出了一种基于邻域对比的目标提取算法。首先,根据小目标区域与其8-邻域背景的差异,利用邻域对比算法实现对小目标的增强和对背景的抑制;其次,采用多尺度模板准确检测小目标区域的变化情况;最后,在得到最终对比图的基础上,利用自适应阈值对目标进行分割。实验结果表明:与现有算法相比,所提出的算法在红外小目标检测方面具有更高的准确性,图像整体的信噪比也有较大的提高。 相似文献
16.
采用两种方法相结合提取矿物蚀变信息,能够有效地减少伪异常信息,提高信息提取精度与效率。以河南省铝土矿区为研究区,引入主成分分析、独立成分分析分别提取研究区蚀变信息,并求得两种方法分析结果的交集。采用16个实地勘探矿床点数据资料进行结果分析,发现通过两种方法提取共同蚀变信息区,可以大大缩小野外勘探面积,减少野外勘探工作量,提高工作效率,对利用遥感技术圈定成矿靶区具有重要的指导意义。 相似文献
17.
基于传统稀疏表示的目标跟踪算法无法解决跟踪过程出现的遮挡及运动模糊等问题,提出一种基于L1范数和最小软阈值均方的目标跟踪算法。首先用主成分分析(principal component analysis, PCA)基向量建模跟踪目标的表观变化,同时对表示系数进行L1范数约束;其次对误差项采用最小软阈值方法进行显示求解,同时对观测模型的更新上考虑跟踪目标的遮挡因素;最后在贝叶斯框架下搭建目标跟踪算法。在14个具有挑战性的跟踪视频上的试验结果表明:与其他算法相比,本研究能够克服跟踪过程中遮挡、角度变化、尺度变化、光照变化等影响跟踪性能的因素,具有较高的平均覆盖率和较低的平均中心点误差。 相似文献
18.
变分贝叶斯自适应容积卡尔曼的SLAM算法 总被引:1,自引:0,他引:1
在观测噪声参数未知或变化时,传统的同步定位与建图(SLAM)算法性能会下降,为了让SLAM算法性能在上述条件下不受影响同时具有较高的精度,基于此提出了一种基于变分贝叶斯噪声自适应容积卡尔曼滤波的SLAM算法(VB-ACKF-SLAM).该算法采用逆Wishart分布对未知观测噪声参数建模,采用容积积分方法近似非线性变换的均值和方差,并利用变分贝叶斯滤波实现对移动机器人状态和未知观测噪声参数的联合后验概率的估计.该算法有效地解决了在观测噪声参数未知或变化时,传统滤波算法出现的滤波发散问题.仿真实验结果表明,在观测噪声参数未知或变化时,与基于容积卡尔曼滤波的SLAM算法(CFK-SLAM)、无迹卡尔曼滤波的SLAM算法(UKF-SLAM)、扩展卡尔曼滤波的SLAM算法(EKF-SLAM)相比,VB-ACKF-SLAM算法的定位准确率得到了较大的提高,证明了该算法的有效性. 相似文献
19.
针对由于外貌、表情、肤色等不同,给人脸检测带来很大困难的问题,提出一种基于肤色特征与边缘检测相结合的人脸检测方法,将归一化后的RGB空间转换为YCbCr空间,再对图像进行光线补偿等预处理;在对肤色区域进行判决的过程中,采用自适应阈值的方法.本文算法实验结果证明具有一定的可靠性和有效性,而且计算速度快、方法简单、定位率高、检测效果好. 相似文献
20.
目的 在保证准确性的前提下,降低运动车辆检测算法的计算量,加快处理速度,满足实时性要求,提出一种基于中值背景模型和自适应阈值的运动检测方法 .方法 基于当前帧与背景图像的差分图像,利用自适应阈值分别对差分图像的三个颜色通道进行二值化,从而实现运动目标的精确检测.同时,根据检测结果 ,采用中值更新策略实现背景图像的实时更新.结果 实验结果 表明,笔者算法可以从复杂交通场景图像序列中有效地检测出运动目标,并且算法计算量小,具有良好的鲁棒性与实时性.算法每帧处理时间比混合高斯降低43%,背景更新时间比一阶Kalman算法降低了45%.结论 算法能够很好地满足智能交通监控系统中运动车辆实时检测的要求. 相似文献