首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数值模拟方法建立AZ31B镁合金管材的挤压极限图   总被引:3,自引:1,他引:2  
王新  王迎新  曾小勤  卢晨 《锻压技术》2007,32(1):99-102
采用Gleeble3000型热-力学模拟试验机对不同温度和应变速率下的AZ31B 镁合金的变形行为进行了研究,得到材料的流动应力曲线并导入专业成形数值模拟软件,对尺寸为Φ40mm×4mm的AZ31B镁合金圆管,进行了挤压数值模拟,根据模拟数据建立了挤压极限图,并通过挤压工艺试验对所得的挤压极限图进行了验证,结果吻合得很好.  相似文献   

2.
镁合金在常温下的塑性成形能力差,在加热条件下成形能力会有明显提高。文章研究了AZ31B板材在温热条件下的成形性能。通过完成刚模胀形实验获得了AZ31B在温度150℃、200℃、250℃的FLD。AZ31B镁合金板材FLD随着温度的升高而升高,表明AZ31B随着温度的升高塑性成形能力增强。在实验基础上进一步获得了成形极限图的计算模型,该模型对实际生产有一定的指导作用。  相似文献   

3.
AZ31镁合金管材挤压成形数值模拟研究   总被引:3,自引:1,他引:2  
根据等温压缩实验所得AZ31镁合金应力一应变数据,拟合出材料温成形应力一应变曲线,应用有限元法模拟AZ31镁合金管材的挤压成形,着重探讨了AZ31镁合金挤压成形过程中,温度、速度、润滑等因素对金属流动的影响,为管类零件挤压成形工艺提供了科学依据。  相似文献   

4.
对镁合金板材进行杯突实验和电磁成形实验,通过板材极限应变的测量和读取,绘制出镁合电磁成形的成形极限图。结果表明,电磁成形提高了镁合金成形极限。  相似文献   

5.
采用连续挤压方法可以实现AZ31镁合金变形,变形条件是决定AZ31镁合金连续挤压成形的关键因素.利用DEFORM3D软件,模拟AZ31镁合金在250型连续挤压机上生产Φ7mm杆的成形过程,建立AZ31镁合金线连续挤压的刚粘塑性有限元模型,分析了连续挤压成形过程不同阶段的温度,等效应力应变变化.研究表明,变形金属的等效应力最高值出现在压实轮下方;温度最高值出现在型腔内;等效应变最大值出现在模具入口处.模拟结果对生产中制定合适的工艺和工模具的设计起到指导作用.  相似文献   

6.
AZ31镁合金板材温热冲压数值模拟与实验研究   总被引:9,自引:0,他引:9  
采用Gleeble3500热模拟实验机进行了单向拉伸实验,分析了AZ31镁合金板材的力学性能;以此实验数据为基础,对温热冲压过程进行了数值模拟,研究了拉深温度、压边力等工艺因素对镁合金板材成形性能的影响;通过极限拉深比实验,对数值模拟结果进行了实验验证。结果表明:在极限拉深温度150℃,极限拉深速度15 mm/s,固定压边力的工艺条件下,极限拉深比能够达到2.5。模拟结果表明:模拟结果和实验结果具有良好的一致性;采用变压边力可以明显提高板材的冲压性能,极限拉深比将达到5.0。  相似文献   

7.
镁合金板材挤压工艺参数较难控制,挤压温度与挤压速度的合理匹配是挤压成功与否的关键.以宽度700 mm、厚度4 mm的AZ31B镁合金薄板为研究对象,基于Forge软件和Normalized Crockroft&Latham断裂准则对其挤压过程进行了模拟.结果表明,挤压初期,铸锭上、下部金属逐渐向心部流动,左、右两侧金属流动与挤压速度保持同向;中、后期,±45.方向金属发生分离,一部分与上、下部金属合流后继续向心部流动,另一部分与左、右侧金属合流后向薄板宽度方向扩展.随挤压行程增加,成形薄板加长,局部高温区域由薄板两侧向中间部分转移;初始挤压温度400℃时,若挤压速度超过1 mm·s-1,薄板局部高温区域温度较高,成形质量和使用性能不易保证.采用380 ~ 400℃的初始挤压温度,大约0.2 mm·s-1的挤压速度,既可以显著降低设备成本,又利于保证薄板使用性能.  相似文献   

8.
采用板材热成形试验机BCS-50AR及网格应变自动测量系统GMASystem,获得了AZ31镁合金薄板在150~250℃温度范围内的成形极限图(FLD)。分别将实验获得的FLD及软件自带的Keeler’s方程作为利用DYNAFORM模拟时的破裂判据,模拟研究了AZ31镁合金筒形件在150~250℃温度范围内的拉深过程,并将模拟结果与AZ31镁合金的等温拉深实验结果进行了比较。结果表明:FLD作为DYNAFORM模拟时的破裂判据,能更好地预测AZ31镁合金薄板成形过程中的破裂问题。  相似文献   

9.
单点渐进成形中通常用最大成形角来表示成形极限,对于研究尚少的热渐进成形,研究其成形极限能够对后期该材料的相关实验研究有借鉴作用。提出一种以油浴方式对AZ31B镁合金板料进行加热处理,并以此辅助的热渐进成形实验,用升高温度梯度的方式探索了合适的加工温度,并在该温度下研究不同板料厚度下的成形极限。结果表明:在介质油温度为200℃左右时,板料的加工性能良好,可以进行渐进成形实验,成形件完整且无明显缺陷;在此温度下,1 mm厚的板料成形极限为45°~47°,1.5 mm厚的板料成形极限为60°~62°。  相似文献   

10.
AZ31镁合金管材挤压过程的数值模拟   总被引:1,自引:2,他引:1  
采用Gleeble1500热模拟机对于不同温度和变形速率下的AZ31镁合金的变形性能进行了研究。通过实验得到真实应力的关系式及真实应变关系式,进而得到真实应力-应变曲线。以此为基础,采用DEFORM-3D软件,对不同壁厚管材的成形的过程进行模拟,发现在挤压时,管材内壁的金属比外壁的金属流动快,挤压筒与圆锥面过渡处的等效应变值最大等现象,分析了产生的原因,并通过工艺试验验证了模拟分析的正确性。  相似文献   

11.
采用DEFORM-2D对AZ31镁合金的挤压变形过程进行了数值模拟。通过设计实验验证了所选材料应力-应变、摩擦系数和换热系数等参数的可靠性。在此基础之上,对一系列不同挤压过程进行了模拟计算分析,得到了坯料温度场分布、应力场分布及挤压载荷等一系列数据,并采用Matlab软件对不同工艺参数与形变载荷之间的关系进行了四维描述。  相似文献   

12.
AZ31镁合金挤压模拟与实验研究   总被引:2,自引:2,他引:2  
采用有限元模拟和实验验证相结合的方法对AZ31镁合金十字型材挤压过程进行研究。研究发现,有限元模拟能够较真实地反映镁合金挤压变形过程中的热力学参数分布和演变情况。同时发现,通过调整挤压速度能使镁合金挤压出口温度维持在较小范围内波动,从而解决镁合金变形温度范围窄的问题,保证制品沿长度方向的组织性能和尺寸精度稳定。  相似文献   

13.
利用ABAQUS提供给用户自定义材料本构模型的Fortran程序接口,对AZ31镁合金进行了材料模型的二次开发,编写了自定义的用户材料子程序(UMAT),并对AZ31镁合金热轧过程进行了有限元数值模拟。主要研究了初始轧件温度为673 K,不同压下率的条件下,板材变形区内厚度方向的温度和应变场的变化情况。数值模拟结果表明:板材在变形区内表面附近和中心位置的温度变化情况不同。随轧制的进行,表面温度先是骤降,然后有小幅度的上升;板材心部温度先是有小幅度的升高,然后大幅度的下降,表面和中心温差在30~40 K之间。板材近表面的应变高于中心层,随压下率的增加应变逐渐增加。微观组织观察结果表明:板材近表面的较大应变导致动态再结晶程度明显高于中心位置。  相似文献   

14.
钟兵 《热加工工艺》2012,41(13):127-129
运用DEFORM-3D有限元分析软件模拟了AZ31镁合金保温杯内筒反挤压过程,分析了温度和挤压速度对AZ31镁合金反挤压过程中的等效应力、挤压力的影响。模拟结果表明:凸模圆角处的等效应力值最大;随着温度的升高,所需要的最大挤压力变小;挤压速度越大,最大挤压力越大。  相似文献   

15.
采用数值模拟和实验方法研究薄壁、多筋AZ31镁合金型材温热弯曲过程,分析成形温度对弯曲型材成形精度的影响。结果表明:当成形温度由100℃升高至200℃时,镁合金型材弯曲件回弹角的实验值和模拟值都减小,实验值由11.6°减小至10.7°;弯曲半径的实验值和模拟值都减小,实验值由94.66 mm减小至93.74 mm;弯曲件截面畸变程度增大,对截面尺寸的影响程度依次为外侧筋厚度、内侧筋厚度、外侧距、内侧距和中间筋厚度。  相似文献   

16.
侯江华  苏光 《热加工工艺》2013,42(1):139-141
摘 要:利用有限元数值模拟分析了各工艺参数(拉深温度、凸模圆角半径及凹模内圆角半径)对镁合金AZ31盒形件拉深成形性能的影响,并通过实验进行了验证.结果表明:采用最佳拉深温度和最佳的凸模圆角半径、凹模内圆角半径可以有效地改善厚度为0.5mm的镁合金AZ31板材的拉深成形性能.  相似文献   

17.
采用非线性结构分析,并建立热-结构耦合的有限元单元模型,对6mm厚AZ31B镁合金无填丝的电子束堆焊温度场的分布及焊缝形貌进行了数值模拟.焊接热源采用高斯旋转曲面体热源,可以较真实的呈现出电子束焊温度场变化情况;通过对比模拟焊缝形貌与试验所得焊缝形貌表明,该模拟较好地体现出电子束深熔焊所具有的钉子型焊缝的特点;热电耦所测温度和模拟温度场结果基本一致.  相似文献   

18.
AZ31镁合金薄壁管挤压成形过程有限元模拟   总被引:1,自引:0,他引:1  
采用Gleeble-1500热-力学模拟试验机进行等温压缩实验所得AZ31镁合金应力--应变数据,建立材料变形的数学模型,拟合出材料温成形应力--应变曲线.应用有限元法模拟AZ31镁合金薄壁管的挤压成形,坯料的成形流变性能按其数学模型施加于MSC-Superform的材料库中,其中着重探讨AZ31镁合金挤压成形过程中,温度、速度、润滑以及模具形状等因素对金属流动的影响,为管类零件挤压成形工艺提供科学的依据.  相似文献   

19.
利用单向热轧、单向温轧和扩幅热轧工艺对连续挤压的AZ31镁合金板坯进行了减薄加工,获得了厚度为1 mm的镁合金薄板.通过拉伸、杯突和刚模胀形实验研究了上述轧制工艺对镁合金板材的力学性能和成形性能的影响,对比了板材的抗拉强度、伸长率和塑性应变比.结果表明,单向温轧板材的抗拉强度最高为267.8 MPa;单向热轧板材的伸长...  相似文献   

20.
AZ31镁合金板材高温杯突试验及其数值模拟   总被引:2,自引:0,他引:2  
在BCS-50AR万能薄板试验机上,测试连铸连轧AZ31镁合金板在室温、150℃、200℃、300℃和450℃时的杯突值(IE值).结果表明,随着温度升高,板材的IE值逐渐增加:在150℃以下,IE值随温度升高而缓慢增加;在150℃以上,IE值随温度的变化明显增加,满足关系式:IEh=-2.08595+0.03648T.在试验基础上模拟了杯突试验,提出并采用减薄率准则讨论了板材厚度对IE值的影响,预测了开裂的部位.结果表明,随着板材厚度增加,IE值随之增加;预测的开裂部位与试验结果一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号