首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在变形温度为925~1150℃和应变速率为0.01~10 s-1的条件下,采用THERMECMASTOR 100 kN热模拟试验机研究了Fe-15Mn-15Al-5Ni-1C低密度钢铸锭的热变形行为,分析了其动态再结晶(DRX)特征,并绘制了其在不同应变量下的热加工图。结果表明:该铸锭变形后的组织主要由高温铁素体(δ-F)、奥氏体(A)、α-铁素体(α-F)和κ-碳化物组成。δ-F和κ-碳化物的存在使得铸锭的热加工性能变差,只有在变形温度升高到1125℃或者应变速率下降到0.02 s-1时,铸锭才能获得再结晶组织,实现软化。Fe-15Mn-15Al-5Ni-1C低密度钢存在两个适宜的热加工区域,区域1:变形温度为1125~1150℃,应变速率为0.01~0.5 s-1;区域2:变形温度为925~1080℃,应变速率为0.01~0.02 s-1。  相似文献   

2.
采用Gleeble-3800型热模拟试验机研究了变形参数对Haynes 282合金热变形时流动应力的影响规律,建立了Haynes 282合金高温塑性变形时的热加工图。结果表明:在达到峰值应变后,当变形温度在1000℃及以下时,合金的软化速率一直大于硬化速率,应力持续下降;当变形温度大于1000℃时,加工硬化速率和再结晶软化速率达到动态平衡。合金热加工图包含两个危险区,危险区I:温度900~1000℃、应变速率0.1~10 s-1和危险区Ⅱ:温度1000~1200℃、应变速率1~10 s-1;热加工图中失稳区是由温度900~1000℃、应变速率0.1~10 s-1和温度1000~1150℃、应变速率0.1~1 s-1组成的区域;安全区对应的温度范围为1000~1200℃,应变速率为0.01~0.1 s-1,该区的功率耗散系数为0.34~0.44,是合适的热加工区。  相似文献   

3.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 k J/mol,最佳热加工工艺为:变形温度1050~1150℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

4.
采用Gleeble-3800热模拟试验机研究了N08811耐热合金在变形温度为900~1150℃、变形速率为0.1~5 s-1条件下的高温变形行为。结果表明,N08811合金的流变应力随着应变速率的增大及变形温度的下降而增加,是一种正应变速率敏感材料。通过对显微组织的研究,发现当应变速率为1 s-1时,N08811合金优先在变形晶粒的晶界处发生动态再结晶,再结晶晶粒数目及尺寸均随变形温度的升高而增加,至变形温度为1150℃时已发生完全再结晶。当变形温度一定时,高应变速率会降低N08811合金的再结晶温度,增加晶粒尺寸。依据真应力-真应变曲线,采用双曲正弦本构模型建立了N08811合金的流变应力本构方程,得到其热变形激活能为509.998 kJ·mol-1。  相似文献   

5.
针对Fe-36Ni因瓦合金在高温变形过程中易出现裂纹、热塑性较差的问题,使用Gleeble-1500热模拟试验机进行了等温热压缩实验,研究了温度为950~1150℃、应变速率为0.01~10 s-1下Fe-36Ni因瓦合金的高温变形行为。采用-(?θ/?σ)-σ曲线分析了实验合金的临界再结晶应力,基于Arrhenius方程建立了Fe-36Ni因瓦合金的高温本构方程,并通过电子背散射衍射观察了变形后的微观组织。结果表明,因瓦合金在实验条件下均可发生再结晶,且临界再结晶应力随温度的升高及应变速率的降低而降低,变形激活能Q为292.46 kJ·mol-1,与Fe和Ni的自扩散激活能相近。通过观察变形后的微观组织发现,不论是在晶粒水平还是晶内亚结构水平,合金中均存在明显的组织不均匀现象。综上所述,不同于一般合金,变形和再结晶困难并不是该实验材料热塑性差的主要原因,其粗大柱状晶导致的高温变形组织不均匀性才是热轧开裂的根源。此外,绘制了真应变为0.1~0.6下的3D功率耗散图及热加工图,预测得到温度为1100~1150℃、应变速率为0.01~0.1 s<...  相似文献   

6.
采用Gleeble 3800热压缩试验机、Deform-3D有限元软件和光学显微镜研究了Inconel 718高温合金在950~1150℃温度范围和应变速率0.1~10 s-1范围内的组织演变和温度场模拟。结果表明,在低变形温度和高应变速率下,初始阶段随着应变的增加,流变应力迅速增加到峰值。达到峰值应力后,流变曲线呈现出明显的流变软化现象。在低变形温度、高应变速率下,产生的变形热较大,合金易于发生动态再结晶,且动态再结晶程度较高,晶粒尺寸较小。当应变速率降低,变形热也逐渐降低,合金内部动态再结晶的晶粒体积分数减少。在变形温度为1100℃和应变速率为0.1 s-1时,合金发生完全动态再结晶。基于Deform-3D软件模拟的温度场分布结果可知,低变形温度、高应变速率的热变形条件会使合金内部产生较大的变形热,随着变形温度的升高和应变速率的降低,变形热的值逐渐减小。当变形温度和应变速率一定时,合金内的变形热会随真应变的增加而不断增加。  相似文献   

7.
通过热压缩试验研究了Cu-0.5Cr-0.1Zr合金在600~750 ℃/0.001~1.0 s-1时的热变形行为。结果表明,Cu-0.5Cr-0.1Zr合金的高温流变应力,动态再结晶临界值和动态再结晶软化效应与变形温度和应变速率密切相关。利用Arrhenius方程计算了Cu-0.5Cr-0.1Zr合金的热激活能QZ参数,分别为244.94 kJ/mol、Z=ε·exp(244.94×103/RT)。采用3种方法进行了动态再结晶临界值的计算,结果证明Poliak-Jonas准则具有最高的精度,并建立了动态再结晶临界值的本构方程。利用动态再结晶的净软化效应η值,讨论了热变形过程中动态再结晶的软化行为。最后,建立了Cu-0.5Cr-0.1Zr合金的热加工图,确定最佳的热加工参数为680~750 ℃,0.001~0.03 s-1,并详细介绍了功率耗散系数与动态再结晶晶粒尺寸之间的关系。  相似文献   

8.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

9.
通过热压缩实验研究了经均匀化处理后的GH4141合金在变形温度为1000~1200℃和应变速率为0.01-5 s-1条件下的热变形行为,构建了GH4141合金的热变形本构方程,并分析了热变形过程中微观组织的演变规律。结果表明,GH4141合金的峰值应力和峰值应变均随着变形温度的升高和应变速率的减小而显著降低。当变形温度为1100~1150℃时,由于动态再结晶的发生,动态软化逐渐与加工硬化达到平衡,流变应力基本不变,真应力-真应变曲线趋于平稳状态。基于Zener-Hollomon参数的双曲正弦模型可以很好地描述GH4141合金热变形过程中峰值应力与变形温度和应变速率的关系。GH4141合金热变形过程中的再结晶程度随着变形温度升高、应变速率减小和变形量增加而增加。当变形温度≥1100℃,应变速率为0.01~0.1 s-1,变形量≥50%时,合金发生完全动态再结晶。  相似文献   

10.
采用热模拟试验法研究了变形温度(340~500℃)和应变速率(0.01~25 s-1)对均匀化态Mg-6Gd-1.2Y-0.53Zr合金动态再结晶(DRX)临界应变及体积分数的影响,通过构建热加工图优化了其热加工工艺参数范围。结果表明,在0.01~1 s-1的低应变速率下,该合金的动态再结晶(DRX)临界应变量随变形温度的升高而升高,而在10~25 s-1高应变速率下,DRX临界应变量随变形温度的升高而略微下降。应变速率及变形温度的升高都使DRX体积分数增大,在500℃、25 s-1条件下,合金的动态再结晶体积分数最高,达90.0%。根据构建的热加工图,当变形量在30%~80%之间时,较佳的热加工工艺区间为400~500℃、0.01~1 s-1以及420~500℃、10~25 s-1。在10~25 s-1应变速率下,当变形量为10%~80%时,合金最适宜的变形温度为460~500℃。  相似文献   

11.
借助Gleeble-3500热模拟试验机研究了Cu-15Ni-8Sn合金在变形温度为933~1083 K,应变速率为0.001~10 s-1条件下的热压缩变形行为,通过Arrhenius模型建立了合金的热压缩变形本构方程并对其准确性进行了验证,基于动态材料模型得到了合金的3D热加工图。结果表明:合金适宜的热加工区间为变形温度993~1083 K,应变速率0.01~0.1 s-1;在应变速率为0.01 s-1时,随着变形温度的升高,合金的位错密度逐渐降低,动态再结晶体积分数逐渐增加,小角度晶界逐渐转化为大角度晶界,动态再结晶产生的软化效果使得合金的变形抗力逐渐降低。  相似文献   

12.
用Gleeble-3800热模拟试验机研究了铸态耐热合金CN617退火后在形变温度1050~1180 ℃,应变速率0.01~10 s-1条件下的热变形行为,建立了该合金的热变形本构方程,绘制了热加工图。结果表明:在形变温度1050~1180 ℃,应变速率0.01~1 s-1条件下,CN617合金的热变形曲线呈现稳态的流变应力;当在形变温度1100~1180 ℃,应变速率10 s-1条件下,其热变形行为表现为持续硬化+动态软化过程。CN617合金热变形的热激活能平均为502.35 kJ/mol。在形变温度1050~1125 ℃,应变速率0.2~10 s-1时形成流变失稳。其原因是动态再结晶程度较低,流变应力较高。  相似文献   

13.
对2195铝锂合金细晶薄板在温度为350~470℃、初始应变速率为0.0001~0.002 s-1的变形条件下进行拉伸,建立应变修正的Arrhenius和含软化因子的Rosserd塑性流动本构模型,利用电子背散射衍射表征变形过程的微观组织演变。结果表明:两种方程均可以较好地描述2195铝锂合金稳态阶段的流动行为,应变修正的Arrhenius模型在变形温度为350~390℃时有一定拟合偏差,而含软化因子的Rosserd模型在470℃、0.002 s-1的高温高应变速率条件下出现拟合偏差,其原因主要是受变形机制影响。2195铝锂合金在350~390℃时发生不连续动态再结晶,而在430~470℃时发生连续动态再结晶;变形温度的升高和变形速率的降低均可以提高2195铝锂合金动态再结晶程度,但提高变形温度的影响更显著;2195铝锂合金在390℃、0.001 s-1变形时的最大伸长率为203%。变形温度的提高会导致晶粒粗化,降低合金的热塑性。  相似文献   

14.
为了获得00Cr12Ni11Mo1Ti2高强度不锈钢热加工图,优化其热加工工艺参数,采用Gleeble-3800型热模拟试验机,在变形温度为850~1150℃,应变速率为0.01~10 s-1的条件下对试验钢进行了热压缩试验,研究了其热变形行为。构建了试验钢在峰值流变应力下的本构方程,并且基于动态材料模型构建了能量耗散图,并分别采用Prasad和Murthy两种失稳判据构建了试验钢的塑性失稳图。结果表明:00Cr12Ni11Mo1Ti2钢在能量耗散率低于0.3的变形区间内同样可以发生动态再结晶,在应变速率为1.0~10 s-1,变形温度为850~1000℃的区间内,试验钢仅发生了部分动态再结晶且伴有大量的局部变形带产生,与Murthy准则预测的塑性失稳区更加吻合;在变形温度为1050~1150℃,应变速率为0.01~10.0 s-1的区间内试验钢具有最佳的热加工性能,可获得细小均匀的原奥氏体晶粒组织。  相似文献   

15.
利用Gleeble-3800热模拟试验机得到17Cr2Ni2MoVNb和20Cr2Ni4A齿轮钢在1000~1150 ℃、0.01~10 s-1的流变应力曲线,构建了两种钢的动态再结晶Avrami动力学模型和热加工图。结果表明,两种钢在高变形温度、低应变速率下易发生动态再结晶。17Cr2Ni2MoVNb钢中较高的Nb和Mo含量对动态再结晶的抑制作用大于20Cr2Ni4A钢中的高Ni含量的影响,导致在相同的热变形条件下17Cr2Ni2MoVNb钢的动态再结晶体积分数小于20Cr2Ni4A钢。17Cr2Ni2MoVNb钢的最佳热加工工艺参数为:温度为1050~1150 ℃、应变速率为0.1~0.6 s-1;20Cr2Ni4A钢的最佳加工参数为:温度为1100~1150 ℃、应变速率为3.3~5.5 s-1。  相似文献   

16.
13Cr超级马氏体不锈钢热压缩变形行为与组织演变   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Gleeble-3500热模拟试验机对13Cr超级马氏体不锈钢进行单道次压缩变形试验,系统研究变形温度在950~1150 ℃、应变速率为0.001~10 s-1条件下的热变形行为。利用双曲正弦模型建立了13Cr超级马氏体不锈钢的流变应力本构方程,求得试验钢的热变形激活能为412 kJ/mol,并基于动态材料模型(DMM)理论绘制了材料的热加工图,得出材料的最佳热变形工艺参数窗口为:变形温度1032~1072 ℃,应变速率0.039~0.087 s-1。组织演变结果表明,试验钢在高变形温度和低应变速率的条件下,容易发生动态再结晶。当应变速率一定时(0.01 s-1),变形温度从950 ℃升到1050 ℃,动态再结晶的体积分数从18.7%升高到60.1%,组织的再结晶程度提高,晶粒均匀细小;当变形温度一定时(1050 ℃),随着应变速率的降低,动态再结晶的晶粒长大粗化。  相似文献   

17.
采用Gleeble-3500热模拟试验机,研究了耐热钢2Cr12Ni4Mo3VNbN在变形温度为900~1200℃、应变速率为0.01~1 s-1、变形量为0.5条件下的热压缩变形行为和微观组织演化规律。基于真应力-真应变曲线分析不同变形温度和应变速率对试验钢热变形行为的影响,采用Arrhenius双曲正弦方程构建耐热钢2Cr12Ni4Mo3VNbN的流变应力本构模型,并结合动态材料模型(DMM)绘制了热加工图。结果表明,流变峰值应力随变形温度升高或应变速率下降而降低,在应变速率为0.1 s-1时,变形温度达到1000℃后开始出现再结晶,且随变形温度升高再结晶晶粒越大;在不同温度下组织中均发现有δ铁素体,其含量随温度升高而增加。结合热加工图和微观组织分析,确定了耐热钢2Cr12Ni4Mo3VNbN的最佳热加工区域为1068~1172℃, 0.08~0.12 s-1。  相似文献   

18.
采用Gleeble-3500热模拟试验机对在变形温度500~650℃和应变速率0.001~1 s-1条件下的60NiTi合金进行热压缩变形,分析其热变形行为和显微组织,建立变形本构模型,绘制热加工图。结果表明,当压缩温度升高或应变速率降低时,峰值应力减小。合金的热变形激活能为327.89 k J/mol,热加工工艺参数为变形温度600~650℃和应变速率0.005~0.05 s-1。当变形温度升高时,合金的再结晶程度增大;当应变速率增大时,位错密度和孪晶数量增大,Ni3Ti相易于聚集;Ni3Ti析出相有利于诱发合金基体的动态再结晶。动态回复、动态再结晶和孪生是60NiTi合金热变形的主要机制。  相似文献   

19.
采用Gleeble-1500热模拟试验机对Ti-2Al-9.2Mo-2Fe合金进行850~1000 ℃,应变速率0.01~10 s-1的高温压缩变形试验。结果表明,热压缩后合金的显微组织为拉长的β晶粒和锯齿状的β晶界。低应变速率(0.01 s-1和0.1 s-1)时,原始β晶界处形成了大量小角度晶界以及少量的再结晶晶粒组织;高应变速率(1 s-1和10 s-1)时,原始β晶界附近形成了大量细小的再结晶晶粒组织。热压缩过程中,合金在屈服之后随应变速率的变化呈现出不同的应变硬化或软化现象。应变速率较高时,合金呈现出明显的应变硬化效应,流变应力出现非常明显的周期性震荡,当应变速率为1 s-1时,未出现应变软化现象,而应变速率为10 s-1时,可观察到明显的流变软化阶段;应变速率较低时,高温(950 ℃和1000 ℃)压缩条件下,合金在屈服之后立即进入流变稳态阶段,无明显的流变硬化或软化现象。而在低温(850 ℃和900 ℃)压缩时,屈服之后出现轻微的流变硬化现象。  相似文献   

20.
通过对2209双相不锈钢进行热压缩试验,分析不同变形温度及变形速率对应力应变曲线的影响,构建2209双相不锈钢的本构方程及热加工图,分析得出温度1 060~1 120℃、应变率0.35~0.39 s-1以及温度1 120~1 200℃、应变率0.42~0.46 s-1适合进行加工。对2209双相不锈钢在0.1 s-1应变速率,950℃和1 150℃两种条件下的热压缩试样进行EBSD测试,获得了对应的再结晶晶粒,亚结构和变形晶粒比例,分析了材料的软化机制,进一步验证了热加工图的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号