首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
殷剑  黎诚  金康  沈智  董奇  张波 《锻压技术》2023,(1):237-244
塑性成形过程中,金属在模具型腔中处于三向应力状态且其变形温度随着流变应变处于动态变化中,因此,合金的流变应力受变形温度、变形量等多因素的综合作用。利用高温压缩模拟试验和有限元分析软件,研究了7022铝合金在变形温度为350、400和450℃,应变速率为0.01、0.1、1和10 s-1,总变形量为50%时的流变应力、变形温度与应变速率之间的关系;利用Arrhenius材料本构关系,构建了7022铝合金的材料本构方程。结果表明:在应变速率和变形温度的综合影响下,7022铝合金的峰值流变应力随着应变速率的增加以及变形温度的下降而升高,在变形温度为350℃、应变速率为10 s-1的形变条件下流变应力达到最大,为156.0 MPa。并通过拟合曲线等方式得到7022铝合金的热激活能为144.332 kJ·mol-1。  相似文献   

2.
伦建伟  刘伟  杨洋  郭诚 《锻压技术》2021,46(3):216-220
为了研究35CrMoV钢的高温变形行为,借助Gleelble 3800型热模拟试验机,在应变速率为0.01~10 s-1、变形温度为950~1150℃的条件下进行轴向单道次高温压缩试验,并根据试验结果绘制35CrMoV钢的流动应力-应变曲线。分析研究了变形温度、应变速率对流动应力的影响,计算了变形激活能Q及参数n、A、α的取值。试验结果表明:35CrMoV钢在950~1150℃进行压缩试验时,存在动态再结晶和动态回复两种流动应力-应变关系,当应变速率为0.01和0.1 s-1时,其流动应力-应变曲线主要表现为动态再结晶型;当应变速率为1和10 s-1时,其流动应力-应变曲线主要表现为动态回复型。在试验条件下获得35CrMoV钢的平均变形激活能Q为310.433 kJ·mol-1,建立了用于描述35CrMoV钢流动应力、应变速率和变形温度三者之间关系的本构方程。  相似文献   

3.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 k J/mol,最佳热加工工艺为:变形温度1050~1150℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

4.
借助Gleeble-1500D热模拟试验机,在温度1050~1200 ℃,应变速率0.01~1 s-1,变形量在50%的条件下对LZ50高速铁路车轴钢试样进行热变形压缩试验。通过试验测得该材料不同工艺参数下的真应力-应变曲线,采用Arrhenius双曲正弦函数推导LZ50钢的高温塑性本构方程,并分析了不同热加工条件下LZ50钢的动态再结晶行为。结果表明,LZ50钢对温度和应变速率的变化较为敏感,温度越高,应变速率越低,所对应流动应力值越小。LZ50钢的变形激活能为217 920.626 J/mol。变形温度越高,应变速率越低,再结晶现象越容易发生。  相似文献   

5.
用Gleeble-3800热模拟试验机研究了铸态耐热合金CN617退火后在形变温度1050~1180 ℃,应变速率0.01~10 s-1条件下的热变形行为,建立了该合金的热变形本构方程,绘制了热加工图。结果表明:在形变温度1050~1180 ℃,应变速率0.01~1 s-1条件下,CN617合金的热变形曲线呈现稳态的流变应力;当在形变温度1100~1180 ℃,应变速率10 s-1条件下,其热变形行为表现为持续硬化+动态软化过程。CN617合金热变形的热激活能平均为502.35 kJ/mol。在形变温度1050~1125 ℃,应变速率0.2~10 s-1时形成流变失稳。其原因是动态再结晶程度较低,流变应力较高。  相似文献   

6.
利用Gleeble-3800热模拟试验机在变形温度为950~1150℃、应变速率为0.1~10 s-1,最大变形量为50%的条件下对15Cr16Ni2MoN钢进行了单道次热压缩试验。根据应变硬化速率θ-应力σ曲线的拐点以及-dθ/dσ-σ曲线计算得到临界动态再结晶(DRX)的临界应力σc与温度T的关系。结果表明,在高应变速率(1和10 s-1)下观察到较为稳定的流动行为,在低应变速率0.1 s-1时,DRX程度更充分并显著改变了真应力-应变曲线变化趋势。DRX发生需要的临界应力σc随温度的升高而逐渐降低,随应变速率的增加逐渐提升。基于Arrhenius模型预测了合金钢的组织演化规律,绘制了在不同应变量下的热加工图,确定最佳热加工区间为变形温度为1030~1070℃,应变速率为0.10~0.22 s-1,并通过金相显微组织观察予以验证。  相似文献   

7.
采用Gleeble-3800型热模拟试验机研究了变形参数对Haynes 282合金热变形时流动应力的影响规律,建立了Haynes 282合金高温塑性变形时的热加工图。结果表明:在达到峰值应变后,当变形温度在1000℃及以下时,合金的软化速率一直大于硬化速率,应力持续下降;当变形温度大于1000℃时,加工硬化速率和再结晶软化速率达到动态平衡。合金热加工图包含两个危险区,危险区I:温度900~1000℃、应变速率0.1~10 s-1和危险区Ⅱ:温度1000~1200℃、应变速率1~10 s-1;热加工图中失稳区是由温度900~1000℃、应变速率0.1~10 s-1和温度1000~1150℃、应变速率0.1~1 s-1组成的区域;安全区对应的温度范围为1000~1200℃,应变速率为0.01~0.1 s-1,该区的功率耗散系数为0.34~0.44,是合适的热加工区。  相似文献   

8.
采用Gleeble-3800热模拟试验机研究了N08811耐热合金在变形温度为900~1150℃、变形速率为0.1~5 s-1条件下的高温变形行为。结果表明,N08811合金的流变应力随着应变速率的增大及变形温度的下降而增加,是一种正应变速率敏感材料。通过对显微组织的研究,发现当应变速率为1 s-1时,N08811合金优先在变形晶粒的晶界处发生动态再结晶,再结晶晶粒数目及尺寸均随变形温度的升高而增加,至变形温度为1150℃时已发生完全再结晶。当变形温度一定时,高应变速率会降低N08811合金的再结晶温度,增加晶粒尺寸。依据真应力-真应变曲线,采用双曲正弦本构模型建立了N08811合金的流变应力本构方程,得到其热变形激活能为509.998 kJ·mol-1。  相似文献   

9.
采用Gleeble-3500热模拟试验机,研究了耐热钢2Cr12Ni4Mo3VNbN在变形温度为900~1200℃、应变速率为0.01~1 s-1、变形量为0.5条件下的热压缩变形行为和微观组织演化规律。基于真应力-真应变曲线分析不同变形温度和应变速率对试验钢热变形行为的影响,采用Arrhenius双曲正弦方程构建耐热钢2Cr12Ni4Mo3VNbN的流变应力本构模型,并结合动态材料模型(DMM)绘制了热加工图。结果表明,流变峰值应力随变形温度升高或应变速率下降而降低,在应变速率为0.1 s-1时,变形温度达到1000℃后开始出现再结晶,且随变形温度升高再结晶晶粒越大;在不同温度下组织中均发现有δ铁素体,其含量随温度升高而增加。结合热加工图和微观组织分析,确定了耐热钢2Cr12Ni4Mo3VNbN的最佳热加工区域为1068~1172℃, 0.08~0.12 s-1。  相似文献   

10.
为了探究0.30C-Cr-W渗氮轴承钢的最佳动态再结晶条件和热变形机理,利用Gleeble3800热模拟试验机对试验钢进行了等温热压缩模拟试验,试验变形温度为750~1050 ℃,应变速率0.01~10 s-1,变形量60%。结果表明,峰值应力随变形温度的降低和应变速率的升高而增大,在应变速率为0.01∼0.1 s-1,变形温度为950~1050 ℃时,发生明显动态再结晶;具有双曲正弦函数型的本构方程能较好地描述0.30C-Cr-W渗氮轴承钢的流变行为;0.30C-Cr-W渗氮轴承钢的形变激活能为442.022 kJ/mol。基于动态材料模型和流变应力数据建立了热加工图。通过热加工图及微观组织的观察确定了变形温度950∼1050 ℃,应变速率0.01∼0.15 s-1为最佳热变形条件;变形温度750∼950 ℃,应变速率1.2∼10 s-1为流变失稳区。  相似文献   

11.
为分析34CrNi3MoV钢的热变形行为,采用Gleeble-1500热模拟试验机进行等温热压缩试验,设置变形温度为800~1200℃、应变速率为0.01~10 s-1,获得相应的流变应力曲线。分析了流变应力对变形参数的敏感性,计算了不同应变量下材料参数α、n、Q和A的值,并利用五阶多项式拟合了各材料参数与应变量的对应关系。采用应变补偿的Arrhenius模型对34CrNi3MoV钢的高温流动应力本构方程进行回归。结果表明:34CrNi3MoV钢在变形温度为1000~1200℃、应变速率为0.01~1 s-1时出现较为明显的动态再结晶曲线特征,并随着应变速率的降低和变形温度的升高,峰值应力越明显。本构方程预测的流动应力与试验结果的吻合度较好,在整个试验范围内的平均相对误差Rav仅为5.52%,表明所构建的模型是可靠的。  相似文献   

12.
用Gleeble 3180热模拟试验机对022Cr钢的热变形行为进行研究,揭示了变形抗力与变形程度、变形温度和应变速率的关系。在950~1200 ℃温度范围和应变速率为0.001~5 s-1下进行热压缩,并利用动态材料模型(DMM)建立了022Cr钢热变形的工艺图。结果表明,随着变形温度的升高和应变速率的降低,022Cr钢的流动应力降低。根据流动应力曲线数据计算其变形激活能为381.615 kJ/mol。当应变不小于0.5时,022Cr钢热加工的最佳变形条件有两个区域,第一个区域在温度范围1100~1200 ℃,应变速率范围0.001~0.01 s-1内,第二个区域在温度范围1130~1180 ℃,应变速率范围1~5 s-1内,其功耗效率都能达到0.4以上。  相似文献   

13.
为准确获得TC21钛合金塑性加工的变形特征和热加工条件,合理设计锻造工艺参数,利用Gleeble-3500热模拟机进行等温恒应变速率热压缩试验,研究了TC21钛合金在变形温度为830~1010℃、应变速率为0.01~10 s-1条件下的热变形行为,采用Arrhenius双曲线正弦函数推导出TC21钛合金本构方程。并基于动态材料模型(Dynamic Materials Model, DMM)建立了TC21钛合金的热加工图。结果表明,在本试验的变形条件下,该合金的流变应力随着变形温度的降低和应变速率的升高而增大。根据热加工图确定了合金的热加工安全区域为:变形温度为900~940℃、应变速率为0.01~0.05 s-1和变形温度为970~1010℃、应变速率为0.01~0.08 s-1。  相似文献   

14.
通过对2209双相不锈钢进行热压缩试验,分析不同变形温度及变形速率对应力应变曲线的影响,构建2209双相不锈钢的本构方程及热加工图,分析得出温度1 060~1 120℃、应变率0.35~0.39 s-1以及温度1 120~1 200℃、应变率0.42~0.46 s-1适合进行加工。对2209双相不锈钢在0.1 s-1应变速率,950℃和1 150℃两种条件下的热压缩试样进行EBSD测试,获得了对应的再结晶晶粒,亚结构和变形晶粒比例,分析了材料的软化机制,进一步验证了热加工图的准确性。  相似文献   

15.
采用Gleeble-3800热模拟试验机对22Cr-32Fe-40Ni合金在变形温度为950~1150℃、应变速率为0.1~10 s-1范围内进行了热模拟压缩试验,对材料在热变形过程中的流变特性和组织演变规律进行了研究。结果表明,在变形温度高于1000℃或应变速率小于1 s-1时,材料的硬化效应和软化效应达到动态平衡;在变形温度低于1000℃或应变速率为10 s-1时,材料以动态再结晶为主的软化效应占主导作用。通过应变硬化率曲线确定了动态再结晶临界条件,基于温度补偿Arrhenius方程建立了22Cr-32Fe-40Ni合金的热变形本构方程,热变形激活能Q为438.339 kJ·mol-1。22Cr-32Fe-40Ni合金适宜的热加工区间为变形温度1040~1150℃,应变速率0.1~0.47 s-1。  相似文献   

16.
通过热压缩实验研究Cu-13Zn-1Ni-1Sn-1.5Al仿金黄铜在温度为953~1123 K和应变速率为0.001~1 s-1条件下的热变形特征。应力-应变曲线表明,流动应力随着温度的升高和应变速率的降低而降低。在0.01 s-1的恒定应变速率下,当温度达到1073 K时,合金的显微组织中出现动态再结晶晶粒。建立合金在不同应变(ε=0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8)条件下的本构方程并计算其变形激活能。当应变为0.8时,合金的本构方程为=7.22×109[sinh(0.0187σ)]3.67exp[-227.17/(RT)],变形激活能为227.17 k J/mol。绘制仿金合金在不同应变条件下的功率耗散图和失稳图,得到合金在热压缩工艺中的最佳热变形温度范围为1010~1040 K,应变速率为1 s-1。  相似文献   

17.
通过热压缩实验研究了经均匀化处理后的GH4141合金在变形温度为1000~1200℃和应变速率为0.01-5 s-1条件下的热变形行为,构建了GH4141合金的热变形本构方程,并分析了热变形过程中微观组织的演变规律。结果表明,GH4141合金的峰值应力和峰值应变均随着变形温度的升高和应变速率的减小而显著降低。当变形温度为1100~1150℃时,由于动态再结晶的发生,动态软化逐渐与加工硬化达到平衡,流变应力基本不变,真应力-真应变曲线趋于平稳状态。基于Zener-Hollomon参数的双曲正弦模型可以很好地描述GH4141合金热变形过程中峰值应力与变形温度和应变速率的关系。GH4141合金热变形过程中的再结晶程度随着变形温度升高、应变速率减小和变形量增加而增加。当变形温度≥1100℃,应变速率为0.01~0.1 s-1,变形量≥50%时,合金发生完全动态再结晶。  相似文献   

18.
于正禄 《轧钢》2007,24(1):45-48
针对V微合金化高强异型钢在轧制过程中易出现翼缘裂边的情况,采用Gleeble 3800热模拟试验机对V质量分数为0.060%~0.080%的连铸坯试样在应变速率为1×10-3 s-1的试验条件下进行了700~950 ℃高温拉伸试验。通过对高温拉伸试样断口形貌、断面收缩率、抗拉强度及应力-应变曲线等的分析,得出试验钢的第III脆性温度区为750~875 ℃,不同变形温度下应力-应变曲线均表现为动态回复,并且随着变形温度的升高,曲线向下向左移动,最大应力对应的应变逐渐降低。因此,连铸生产时应优化配水模型,连铸坯入矫直机温度为900~950 ℃,以保证铸坯良好的表面质量。  相似文献   

19.
采用热模拟试验法研究了变形温度(340~500℃)和应变速率(0.01~25 s-1)对均匀化态Mg-6Gd-1.2Y-0.53Zr合金动态再结晶(DRX)临界应变及体积分数的影响,通过构建热加工图优化了其热加工工艺参数范围。结果表明,在0.01~1 s-1的低应变速率下,该合金的动态再结晶(DRX)临界应变量随变形温度的升高而升高,而在10~25 s-1高应变速率下,DRX临界应变量随变形温度的升高而略微下降。应变速率及变形温度的升高都使DRX体积分数增大,在500℃、25 s-1条件下,合金的动态再结晶体积分数最高,达90.0%。根据构建的热加工图,当变形量在30%~80%之间时,较佳的热加工工艺区间为400~500℃、0.01~1 s-1以及420~500℃、10~25 s-1。在10~25 s-1应变速率下,当变形量为10%~80%时,合金最适宜的变形温度为460~500℃。  相似文献   

20.
利用Gleeble-3800热模拟实验机,对自主研发的Si-Cr-Mo改进型H13热作模具钢——3Cr2Mo3钢进行热压缩实验,研究了其在变形温度为950~1200℃、应变速率为0.01~10 s-1条件下的热变形行为。基于实验得到的真应力-真应变曲线,建立了Arrhenius型本构方程,并对其进行真应变补偿。由动态材料模型构建了3Cr2Mo3钢的热加工图,并得到了最佳热加工范围。利用有限元软件DEFORM和光学显微镜,研究了3Cr2Mo3钢在热变形过程中的温度场与微观组织的关系。结果表明:3Cr2Mo3钢的真应力受应变速率和变形温度的影响,且在低应变速率下(0.01 s-1)出现明显的动态软化特征,6次真应变补偿型本构方程的拟合精度高;实验条件范围内,3Cr2Mo3钢的最佳热加工范围为变形温度为1110~1200℃、应变速率为0.01~1 s-1;有限元软件DEFORM温度场结果显示,随着变形温度的升高和应变速率的降低,试样的心部与表面的温度场分布均匀,微观组织为均匀细小的动态再结晶晶粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号