首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
于沛  夏卿 《锻压技术》2023,(4):256-264
以TRIP590钢为研究对象,对静态和高应变速率下的力学性能进行测试,获取性能变化规律,并对应变速率相关本构模型进行拟合;采用剪切、中心孔拉伸、缺口拉伸、穿孔等5种试样来表征材料在拉伸、剪切及复合状态下的失效行为,并采用MMC断裂失效模型进行拟合;将材料模型应用于不同试样模型,开展断裂试验仿真,并与试验测试结果进行对比,以验证失效模型的精度;采用高速冲击折弯进行试验,验证模型的准确性。结果表明:TRIP590钢具有良好的延展性,断后伸长率可达35.5%,强塑积达到21.66 GPa%;具有较强的应变速率敏感性,随着应变速率的增加,其强度不断增加,而且材料的伸长率也不断提高;随着应变速率的提升,材料吸收的能量逐渐增加;设计的5种断裂失效测试试样可以表征材料的失效行为;应用MMC断裂失效模型仿真所得的断裂形貌与试验结果相符,关键参数仿真与试验测试结果的平均误差均小于5.5%;拟合获得材料本构模型用于冲击折弯的仿真结果与实测结果基本一致,误差控制在3%以内,可以较好地反应材料的力学特征。  相似文献   

2.
先进高强钢对汽车的安全性和轻量化具有重要影响,其动态力学性能直接影响到整车碰撞安全。针对汽车用先进高强钢的动态力学性能进行分析,选取双相高强钢HC500/DP780,分别采用普通力学拉伸试验机和液压伺服高速拉伸试验机,获得0.001和0.1 s~(-1)的2种准静态下以及1,10,100,200,500和1000 s~(-1)的6种高应变速率下的单向拉伸试验力学性能,并基于Johnson-Cook方程获得材料的动态力学本构模型。基于薄壁梁落锤压溃试验平台进行压溃性能分析,并采用LS-DYNA进行模拟仿真分析,以此对材料动态力学性能数据及本构模型进行验证分析。结果可知:模型仿真与试验分析的变化趋势基本一致,表明模型仿真的准确性,进而说明材料动态力学性能及本构模型的准确性;随着碰撞速率的增加,管件的吸能比以及载荷比都在减小,这说明碰撞速率对管件的吸能特性有一定影响,随着碰撞速率增加,管件的吸能特性逐渐降低。  相似文献   

3.
为探究TA1纯钛的动态力学性能,对0.5 mm厚度的TA1纯钛薄板试样进行了准静态以及不同应变速率下的动态拉伸实验,建立了能够真实反映TA1纯钛在高应变速率和较大应变范围内的塑性变形特征的Johnson-Cook(J-C)本构模型,并对原始模型进行了修正;同时,对不同缺口半径的TA1纯钛拉伸试样进行了准静态拉伸实验,建立了基于应力三轴度的失效模型。将建立的J-C本构与失效模型应用于LS-Dyna中进行仿真模拟,并与实验数据对比,验证了模型的有效性与实用性。  相似文献   

4.
郭鹤  张玉华 《锻压技术》2023,(10):235-244
对超高强双相钢HC820/1180DPD+Z的断裂失效模型开展研究,并分析了其微观组织和力学性能。基于MMC断裂失效准则,设计了5种失效试样,采用万能试验机和DIC获得了5种试验的断裂临界塑性应变和力-位移曲线,采用Swift和Hockett-Sherby混合硬化模型拟合并获取了材料的外延硬化曲线,并得到混合模型的最佳加权系数和5种试样的仿真模型,基于仿真模型获得5种应力状态下的应力三轴度和临界塑性应变。最后,基于MMC断裂失效模型拟合获得材料的失效曲线,并采用防撞梁落锤冲击试验与仿真对比分析,验证了断裂失效模型的准确性和精度。结果表明:混合硬化模型对材料硬化曲线的拟合精度较高,加权系数α为0.3时各断裂失效试样的最大力值误差小于3%;未应用断裂失效模型的加速度-时间曲线与试验曲线明显不符,误差较大,而应用MMC断裂失效模型的断裂形貌与试验结果相符,断裂时刻和加速度最大值时的误差分别为2.5%和1.7%,说明模型的精度较高,可以应用于整车碰撞仿真分析。  相似文献   

5.
高伸长率QP钢在高应变速率下的力学特性   总被引:1,自引:0,他引:1  
为研究高伸长率QP钢的动态力学特性,以两种强度级别的QP钢为研究对象,进行准静态和高应变速率下的单向拉伸试验,得到了不同应变速率下的应力-应变曲线。通过对试验数据的分析,研究了应力与应变速率的关系,并提出动态本构模型来描述QP钢的动态力学特性。基于QP980制作的帽型梁零件,使用HyperWorks进行建模,使用LS-DYNA进行模拟轴向压溃过程的计算,并与实际碰撞试验结果进行对比和验证。通过分析发现:QP钢具有明显的应变速率效应,而且应变速率硬化与相对应变速率不呈线性关系。QP钢帽形梁碰撞试验与仿真对比表明,使用修正的Johnson-Cook模型能较好地描述QP钢在不同应变速率下的动态力学特性。  相似文献   

6.
使用Gleeble-3800对锻态Ti6242s钛合金在温度950~1010℃、应变速率0.01~10 s-1的条件下进行了75%变形量的热压缩模拟试验。基于实验取得的真应力-真应变曲线,分别使用人工神经网络(ANN)和Arrhenius方程建立Ti6242s合金本构模型,研究其热变形行为。结果表明:流变应力在变形开始后迅速上升至峰值应力,随后硬化与软化达到动态平衡,在真应变达到0.6后加工硬化逐渐占据主导,硬化幅度随应变速率的增大而提高;人工神经网络本构模型预测值的平均相对误差(AARE)为2.25%,决定系数(R2)为0.999 06;Arrhenius方程本构模型预测值的AARE为14.40%,R~2为0.954 68,精度在参数范围内波动较大;ANN本构模型精度远高于Arrhenius本构模型,且在整个参数范围内具有一致的精度;ANN本构模型具有良好的泛化能力,在实验参数范围外预测流变应力仍具有较高的精度。  相似文献   

7.
汽车碰撞过程中材料变形是高应变的动态过程,其应变速率分布在10-1~10-3s-1之间.车辆碰撞安全可靠性分析对材料在高应变速率条件下的力学行为提出了评测需求。可靠的材料模型是有限元仿真的基础.碰撞问题的有限元仿真涉及到材料在动态载荷作用下的弹塑性本构关系.另外,汽车主机厂的材料认证也要求提供材料动态拉伸力学性能数据,因此,有必要开展汽车板材料动态力学行为研究.建立与变形率相关的材料模型。  相似文献   

8.
对HC340LA低合金高强钢板分别施加5%、10%、15%的拉伸预应变,通过准静态和冲击拉伸实验,获得不同应变率下、不同预应变量试样的应力-应变曲线。实验结果表明,HC340LA高强钢对预应变和应变速率敏感,流动应力随着预应变量和应变率的提高而增大。在超过600s-1的高应变速率下,绝热温升效应使材料发生软化,不同预应变量下的材料随应变率的提高延塑性增大。分别基于流动应力模型和Johnson-Cook本构模型拟合实验数据,确立了各种状态下的本构关系。该研究可为考虑成形历史的汽车零部件的碰撞仿真提供可靠的原始数据。  相似文献   

9.
对HC340LA低合金高强钢板分别施加5%、10%、15%的拉伸预应变,通过准静态和冲击拉伸实验,获得不同应变率下、不同预应变量试样的应力-应变曲线。实验结果表明,HC340LA高强钢对预应变和应变速率敏感,流动应力随着预应变量和应变率的提高而增大。在超过600s-1的高应变速率下,绝热温升效应使材料发生软化,不同预应变量下的材料随应变率的提高延塑性增大。分别基于流动应力模型和Johnson-Cook本构模型拟合实验数据,确立了各种状态下的本构关系。该研究可为考虑成形历史的汽车零部件的碰撞仿真提供可靠的原始数据。  相似文献   

10.
通过对B280VK高强钢进行动态和准静态拉伸试验获取了其相关力学性能,并基于Johnson-Cook本构模型反求出B280VK高强钢的本构模型参数。结果表明,Johnson-Cook本构模型拟合曲线与试验拉伸曲线具有较高的一致性,能够反映出B280VK高强钢材料拉伸应力及应变变化趋势,可用于预测B280VK高强钢的应力-应变关系。然后,利用不同缺口样件准静态和动态拉伸载荷工况下获得的失效应变和应力三轴度值,通过最小二乘法拟合获得Johnson-Cook失效模型参数。最后,通过对比仿真与试验结果发现仿真与试验的载荷-位移曲线具有较高的一致性,并且峰值载荷最大相对误差被控制在9.23%以内,验证了B280VK高强钢的Johnson-Cook失效模型的准确性。  相似文献   

11.
利用Zwick高温材料试验机在温度700℃~900℃,应变速率0.1s~(-1)~10s~(-1)条件下,对厚2mm的高强度钢B1500HS进行力学性能试验,获得真应力-应变曲线。通过研究高温条件下高强度钢B1500HS的流变行为,建立包含温度、应变速率以及应变的参数化流动应力模型,利用模型绘制出应力-应变曲线。将不同温度、应变速率下的试验拟合曲线与模型曲线进行比较,两者具有较好的一致性,从而验证了本构模型的可行性。  相似文献   

12.
在某车型前舱的设计空间内,设计了一款基于铝型材的前防撞横梁,并通过准静态和动态拉伸试验获得了铝合金的应力-应变曲线,开展了前防撞横梁的服役性能预测及评价。结果表明,6061-T6和6082-T6铝合金的流变应力具有明显的应变速率效应。相比之下,6061-T6铝合金的屈服强度略高,而6082-T6铝合金的应变硬化和应变速率硬化更强;40%重叠偏置碰撞的最大侵入量和应变均大于100%重叠正面碰撞,两者的最大侵入量分别为29.2和29.1 mm,最终侵入量分别为22.4和14.9 mm;拖钩强度工况下,前防撞横梁各结构和焊缝的安全系数均大于1.45,6061-T6铝合金部件、6082-T6铝合金部件和焊缝处的最大疲劳损伤分别为0.435、0.103和0.460,满足强度和损伤的评价指标。  相似文献   

13.
利用Gleeble-1500D型热模拟试验机在变形温度为650~950℃、应变速率为0.001~1 s-1、变形量为60%的条件下对10%Cr/Cu复合材料进行热模拟压缩试验。依据热模拟实验数据,绘制出10%Cr/Cu复合材料的流变应力曲线,分析变形温度、应变速率对流变应力的影响。用线性回归法确定出10%Cr/Cu复合材料的热变形激活能(Q)和高温变形本构关系模型,并引入应变对模型进行修正,最后通过误差分析验证了方程的可靠性。结果表明:10%Cr/Cu复合材料的流变应力随温度的升高和应变速率的降低而减少;计算得出10%Cr/Cu复合材料的热变形激活能为260.7 kJ/mol;建立了复合材料的本构方程,对构建的本构方程模型进行误差验证得出平均相对误差为7.39%;利用Avrami模型求出了复合材料的动态再结晶分数模型,该模型表明在高温和较低应变速率条件下有利于该材料发生动态再结晶。  相似文献   

14.
应变速率对AZ31挤压变形镁合金力学行为的影响   总被引:1,自引:1,他引:0  
通过静态拉伸试验机和高应变速率冲击拉伸试验装置,对AZ31挤压镁合金分别进行了不同应变率下拉伸力学性能的试验,获得了各应变速率下完整的应力-应变曲线。并通过扫描电镜对其拉伸断口进行分析。结果表明,其屈服应力、拉伸强度随着应变速率的增加而增加,失稳应变则随着应变速率的增加而有所减小;而弹性模量则对应变率不敏感。采用Johnson-Cook材料模型描述AZ31镁合金应变速率相关的应力应变本构模型,其拟合结果和实验结果基本相吻合。扫描电镜断口分析结果表明,动态和静态的断裂方式基本相同,都是以准解理断裂特征为主,局部区域伴有解理断裂。  相似文献   

15.
利用拉伸试验机、霍普金森拉杆装置,对比研究了室温下F700高强钢应变速率在5000 s~(-1)范围内静态与动态下的力学性能。研究表明:F700钢静态时具有良好的塑韧性;F700钢具有应变速率强化效应,应变速率为3300 s~(-1)时,应变速率敏感性开始降低。F700钢吸收能量随应变速率的增加而增加,在应变速率达到4800 s~(-1)后趋于稳定,约245 J/cm~3。通过对试验数据进行本构方程拟合,得到了F700钢室温下应变速率在5000 s~(-1)范围内的Johnson-Cook本构模型。  相似文献   

16.
2519A铝合金的动态力学性能及本构关系   总被引:1,自引:0,他引:1  
为研究应变速率及温度对2519A铝合金流变应力的影响,对2519A铝合金进行动态力学性能测试及准静态拉伸实验,结合光学显微镜及透射显微电镜分析应变速率及温度对微观组织演化的影响。研究结果表明:2519A铝合金具有应变速率效应及温度敏感性。采用变量分离与非线性拟合方法对准静态及霍普金森压杆(SHPB)实验数据进行拟合,得到2519A铝合金的Johnson-Cook本构模型参数,曲线拟合与实验结果吻合较好,为力学性能的研究及抗弹性能有限元分析提供了参考。  相似文献   

17.
利用Gleeble-3800热模拟实验机,在应变速率0.001~1 s-1以及变形温度750~950 ℃范围内对Ti-555211合金进行等温恒应变速率压缩实验。基于人工神经网络的方法建立了Ti-555211合金热变形本构模型。模型的可靠性用平均相对误差和相关系数来确定。结果表明,所建立的本构模型与实验值的平均相对误差为1.60%,相关系数为0.99938,表明该模型能很好地预测该合金的本构关系。用神经网络来确定本构关系比传统的数学方程更加具有优势。热模拟实验结果表明,随着变形温度的升高和应变速率的减小,该材料的峰值应力有所减小,不连续屈服现象随着变形温度升高和应变速率的增大变得更加明显。流变曲线在不同的变形参数条件下表现形式也不同。  相似文献   

18.
针对ERW焊管排辊成形过程中带刚反复加载、卸载的复杂成形工艺特点,提出了考虑包辛格效应的混合硬化材料本构模型;通过ABAQUS用户材料子程序VUMAT的二次开发,对混合硬化材料的本构模型进行了有限元程序实现;基于混合硬化模型,对ERW焊管排辊成形过程进行了数值模拟,分析了成形过程中应力应变的变化规律,并对计算结果进行了对比。结果表明,混合硬化模型能够很好地体现ERW焊管排辊成形反复加载、卸载的成形工艺特点;不同的材料硬化模型对排辊成形过程中板料的应力应变产生较大影响。  相似文献   

19.
Laves相NbCr2/Nb两相合金因其优良的高温力学性能而具有作为新型高温结构材料应用的潜力;流动应力本构关系反映了合金的热变形行为。本文基于Laves相NbCr2/Nb两相合金在1000-1200℃、0.001-0.1s-1条件下的等温恒应变速率压缩实验数据,首次探讨了该合金在考虑变形温度对合金杨氏模量和自扩散系数影响的应变补偿物理本构关系。结果表明,基于蠕变指数n=5的应变补偿物理本构关系的相关系数R和平均绝对相对误差AARE分别为0.974和59.3%,说明该物理本构模型不适于表征该合金的流动应力行为;而基于蠕变指数n为变量的应变补偿物理本构关系的相关系数R和平均绝对相对误差AARE分别为0.984和10.6%,说明该物理本构模型能满意地表征该合金的流动应力行为,且其对流动应力的预测能力优于传统的Arrhenius本构模型。  相似文献   

20.
利用分离式霍普金森压杆和分离式霍普金森拉杆装置对ZL114A铝合金进行了高应变速率下的动态力学性能试验。利用最小二乘法对本构模型与损伤模型参数进行了标定。考虑应变与应变速率的耦合作用,基于原始J-C模型,提出了一种修正的本构模型。材料的真应力-真应变曲线表明,ZL114A铝合金表现出明显的应变强化与负应变速率效应,等效塑性断裂应变随应力三轴度的减小和应变速率的增加而增加。数据验证表明,修正后的J-C本构模型比原始的J-C模型预测精度更高,其最大平均绝对相对误差为2.830%,较原始的J-C模型减小了21.138%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号