首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭芬岈  马雨涵  戎怡珅  黎挺挺 《化学试剂》2019,41(11):1110-1114
过渡金属硫化物因其制备简单、导电性好以及具有丰富的氧化还原性质被广泛用作电催化剂。在导电基底上原位生长复合材料被认为可有效提高催化剂的电催化性能。基于此,利用简单、可控的电沉积法,以泡沫铜作为导电基底,以硝酸铜和硝酸钴作为铜源和钴源原位制备了Co_9S_8-Cu S纳米片阵列。在三电极体系中,将Co_9S_8-Cu S纳米片阵列作为阳极在1 mol/L KOH溶液中得到了优异的电催化析氧性能,Co_9S_8-Cu S纳米片阵列获取50 m A/cm~2电流密度所需的过电位仅为370 m V,其Tafel斜率低至108 m V/dec,其优异的电催化析氧性能归因于较大的催化活性面积以及复合材料中Co_9S_8与Cu S之间的协同作用。  相似文献   

2.
采用简单的两步水热法和退火处理在泡沫镍上制备出异质结构Co_3O_4@CoMoO_4阵列(Co_3O_4@CoMoO_4/NF)。结果表明,Co_3O_4@CoMoO_4/NF比Co_3O_4/NF拥有更大的活性面积和更优异的电催化析氧性能,主要是由于其3D异质结构和协同作用。Co_3O_4@CoMoO_4纳米阵列在1 mol/L KOH溶液中和50 mA/cm~2电流密度下的析氧过电位仅为253 mV,塔菲尔斜率为59 mV/dec,并且表现出优异的析氧稳定性。  相似文献   

3.
为设计同时具有优异电催化析氢和析氧性能的过渡金属基催化剂,以泡沫镍为载体和集流体,原位制备了硒化钼(MoSey)和羟基氧化铁(FeOOH),得到FeOOH/MoSey@Ni复合材料。表征结果表明,先通过电沉积法原位生长了MoSey层,再以该MoSey层为成核点,通过常温浸泡生长形成了由FeOOH纳米片组成的微米绒球。在三电极体系中,以1 mol·L-1 KOH溶液为电解液,该FeOOH/MoSey@Ni复合材料表现出优异的电催化析氢和析氧性能,析氢电流密度在10 mA·cm-2时的过电位(η10)为128 mV,析氧电流密度在20 mA·cm-2时的过电位(η20)为306 mV,并具有较小的Tafel斜率、较大的双电层电容(Cdl)值和良好的稳定性。FeOOH/MoSey@Ni优异的电催化性能主要由于三维开放的泡沫镍骨架和原...  相似文献   

4.
过渡金属硒化物已被认为是一类极具发展前景的电解水催化剂。以泡沫镍为基底和镍源,通过一步水热法在泡沫镍上负载硒化镍制备电催化剂(记为Ni-Se@NF)。扫描电镜图表明,在泡沫镍表面原位生长合成了一层纳米颗粒;X射线衍射和X射线光电子能谱表征证明该层纳米颗粒为Ni_(0.85)Se和Ni_3Se_2。在1 mol·L~(-1)KOH电解质中,对Ni-Se@NF电极进行了双催化电解水性能测试。Ni-Se@NF电极的析氢电流密度10 mA·cm~(-2)时的超电势为153 mV,析氧电流密度50 mA·cm~(-2)时的超电势为340 mV,并表现出良好的稳定性。  相似文献   

5.
氢能是一种具有高能量密度的清洁能源,如何有效的开发绿氢技术是当前社会首要解决的问题,而研发高效稳定的电解水产氢技术的电催化剂是一种可行性的方式,对促进氢能经济的发展具有重要的意义。通过水热-高温热解两步法合成了一种氮化铬支撑镍纳米颗粒的催化剂(Ni/CrN)。利用XRD、XPS、SEM以及TEM等测试手段对催化剂的形貌及结构进行表征,并在碱性环境下对催化剂进行电催化析氢性能的研究。结果表明,Ni/CrN形成了具有珊瑚状的微观结构,优化了电子结构,并且表现出了优异的析氢反应(HER)催化性能,在10 mA/cm2的电流密度下,Ni/CrN催化剂仅有66 mV的过电位和47 mV/dec的Tafel斜率,十分接近商业的Pt/C催化剂的析氢性能。在10 mA/cm2电流密度的循环稳定性测试中,Ni/CrN表现出比商业Pt/C电极更优越的催化稳定性。  相似文献   

6.
由于氢能源和环境废水处理的需求,使尿素氧化和氢能产生的双功能催化剂的发展成为重大的挑战。本文中合成了双功能催化剂Ni_3N。对尿素氧化,当电流密度为10 mA·cm~(-2)时,电位为1.34 V,Tafel斜率为41 mV dec~(-1)。同时对析氢反应来说,当电流密度为10 mA·cm~(-2),电位为120 mV,Tafel斜率为110 mV dec~(-1)。  相似文献   

7.
《广州化工》2021,49(7)
以FeCl_3·6H_2O、CoCl_2·6H_2O、尿素和四丁基溴化铵为原料,采用简单的水热-煅烧法制备了Co_3O_4/Fe_2O_3复合催化剂,采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸脱附技术对所制备样品进行了表征,并测试了其电催化析氧反应(OER)的活性。结果表明,和单一组分相比,复合催化剂的活性得到了极大提高,尤其是组成优化的催化剂Co_3O_4/Fe_2O_3-1.0表现出了最高的催化活性,其在1 M KOH中催化OER,当电流密度为10 mA/cm~2时的过电位(η_(10))仅为329 mV,接近贵金属催化剂RuO_2的过电位292 mV。  相似文献   

8.
采用一种简单易行的共沉淀法合成了前驱体镍铁普鲁士蓝类似物NiFe-PBA(NF),然后通过溶剂热处理获得了镍铁普鲁士蓝纳米多孔材料(NFP).通过XRD、SEM、TEM、XPS、BET及电化学方法对所得材料进行了结构表征和析氧性能测试.结果表明,NFP相对于前驱体NF,电化学比表面积增大、催化活性位点增多,电催化析氧反应(OER)性能显著提高.在浓度1 mol/L KOH水溶液中,达到10 mA/cm2电流密度时,NFP所需过电位仅为260 mV,比NF(320 mV)前驱体低了18.75%,也优于大多数已报道的非贵金属催化剂和商用贵金属催化剂,显示出良好的应用前景.  相似文献   

9.
采用一种简单易行的共沉淀法合成了前驱体镍铁普鲁士蓝类似物NiFe-PBA(NF),然后通过溶剂热处理获得了镍铁普鲁士蓝纳米多孔材料(NFP)。通过XRD、SEM、TEM、XPS、BET及电化学方法对所得材料进行了结构表征和析氧性能测试。结果表明,NFP相对于前驱体NF,电化学比表面积增大、催化活性位点增多,电催化析氧反应(OER)性能显著提高。在浓度1 mol/L KOH水溶液中,达到10 mA/cm2电流密度时,NFP所需过电位仅为260 mV,比NF(320 mV)前驱体低18.75%,也优于大多数已报道的非贵金属催化剂和商用贵金属催化剂,显示出良好的应用前景。  相似文献   

10.
Co_3O_4纳米片是一种性能优异的电催化剂材料,其多孔结构影响电催化析氧(OER)的性能。通过溶剂热法结合热处理调控Co_3O_4纳米片的多孔结构,并利用XRD、SEM、TEM和N_2吸附-脱附(BET)等方法表征了不同煅烧温度(300、400、500℃)下的物相与多孔结构。电催化性能表征结果表明,Co_3O_4纳米片具有最大的比表面积(93. 02 m~2/g)、最优的介孔孔容(0. 196 cm~3/g)的多孔结构(300℃煅烧样品),表现出最优的OER性能:起始电位为1. 539 V,过电势为0. 37 V,Tafel斜率为49 m V/dec。  相似文献   

11.
利用简易方法制备同时具有丰富活性位点和优异本征活性的硫化镍电催化剂以实现高效电解水产氢对于可持续的氢能经济至关重要。利用简单两步电化学沉积法在泡沫镍基底上构建出一种新型的具有多层级孔结构的氮掺杂硫化镍电催化剂(Ni-S-N/Ni/NF)。该Ni-S-N/Ni/NF催化剂不仅拥有大量活性位点并且展现出增强的本征活性,在1 mol·L-1氢氧化钾电解液中表现出优异的析氢性能,仅需84 mV过电位即可实现10 mA·cm-2的电流密度。该工作有望为高性能硫化镍催化剂的制备提供有益借鉴。  相似文献   

12.
为了解决Pt基催化剂成本较高的问题,使用电弧放电和高温碳化两步法制备了一种碳纳米片负载碳化钼纳米颗粒的非贵金属催化剂。通过X-射线粉末衍射仪(XRD)、透射电子显微镜(TEM)对催化剂的晶体结构、形貌、碳化钼颗粒尺寸进行了表征分析。结果表明,700℃碳化得到的碳化钼/碳纳米片复合催化剂(Mo_2C/CNS)在酸性电解质溶液中表现出优异的析氢性能。在-10 mA/cm~2的电流密度下过电位为-221 mV,塔菲尔(Tafel)斜率为68.1 mV/dec,并且1 000圈CV扫描后过电位没有明显下降,显示出优异的稳定性。  相似文献   

13.
在室温下利用NaBH4溶液还原Co3O4纳米线获得富含氧空位(VO)的三维自支撑纳米线阵列用作全水解电催化剂,其中NaBH4处理10 min的Co3O4/NF在碱性介质中对析氧反应(OER)和析氢反应(HER)表现出很高的活性,在10 mA·cm-2电流密度下分别仅需240和132 mV的过电位。VO-Co3O4/NF同时作为阴极和阳极电催化剂时,在10 mA·cm-2下电解水槽电压仅为1.63 V,其耐久性可达60 h以上。该工作为富含氧空位结构的过渡金属氧化物双功能电催化剂的制备提供了新的方法和思路。  相似文献   

14.
通过溶胶-凝胶法合成了双钙钛矿型氧化物Sr_2Ni_(0.4)Co_(1.6)O_6、通过改性Hummers还原方法制备出薄层石墨烯,并制备单一物质和两者复合材料的双功能氧电极,用于测试其氧催化性能。采用XRD、EDS、SEM、FTIR对样品进行表征。结果显示:Sr_2Ni_(0.4)Co_(1.6)O_6均匀地分布于薄层石墨烯片层表面。电化学性能测试结果表明:单一Sr_2Ni_(0.4)Co_(1.6)O_6和薄层石墨烯的氧还原反应(ORR)最大电流密度分别为0.1830、0.1516A/cm~2 (–0.6Vvs.Hg/Hg O),氧析出反应(OER)最大电流密度分别为0.2677、0.1174 A/cm~2 (1 V vs. Hg/HgO)。当薄层石墨烯添加量占复合催化剂质量的10%时,复合催化剂的氧催化性能最佳,ORR最大电流密度为0.2901 A/cm~2(–0.6Vvs.Hg/Hg O),OER最大电流密度为0.3905 A/cm~2 (1 V vs. Hg/HgO),明显高于单一催化剂。  相似文献   

15.
以CoCl2·6H2O为原料,通过溶剂热法和磷化工艺在泡沫镍表面构建Co2P4O12阵列,Co2P4O12纳米线直径约200 nm。采用SEM、TEM和XRD进行形貌和晶体学特性表征,并利用三电极体系在碱性环境下测量电化学性能。在析氢过程中,只需要122 mV过电位就能达到10 mA·cm-2电流密度。析氧过程中,仅需要334 mV的过电位就能达到15 mA·cm-2电流密度。组装的电解池在15 mA·cm-2的电流密度下工作40 h后电解槽电压没有发生明显变化,展现出很好的稳定性。Co2P4O12/NF是一种有潜力的双功能催化剂。  相似文献   

16.
寻找高效廉价的析氢催化剂是"氢经济"中关键一步。通过溶剂热法合成以还原氧化石墨烯(RGO)为载体的Ni_2P纳米颗粒和MoS_2复合材料。在酸性条件下,该复合材料对析氢反应表现出较高的催化活性和稳定性,当电流密度为10 m A·cm~(-2)时过电位为160 mV,塔菲尔斜率为35.9 mV·dec~(-1)。Ni_2P和MoS_2之间的协同效应用氢溢流理论进行了解释。  相似文献   

17.
在全pH(0~14)范围下设计开发低廉、高活性的析氢电催化剂对新能源开发和利用具有重要实际意义。通过简单的溶剂热法在镍网(NF)上原位构筑了纳米线结构MoS2/Ni3S2/NF电催化剂,该催化剂在全PH范围下表现出优异的析氢(HER)活性。电化学测试结果表明,使用41 mg四硫代钼酸铵制得的MoS2/Ni3S2/NF-41电极,在电流密度10 mA/cm2时,其在碱性(1 moL/L KOH,pH=14)、中性(0.5 moL/L PBS,pH=7)和酸性(0.5 moL/L H2SO4,pH=0)介质中HER过电位分别为87、113和195 mV,并相应表现出较低的Tafel斜率。另外,SEM、TEM、EDX、XPS等表征手段表明该催化剂具有良好的结构稳定性。本研究为过渡金属硫化物在全pH环境下高效析氢提供了新途径。  相似文献   

18.
电催化分解水是能量转化和储存的一种重要形式,析氧半反应是其速率决定步骤。利用一步溶剂热法制备了以泡沫镍为基底的纳米片层状Ni-Fe-V LDHs催化材料,研究了N,N-二甲基甲酰胺用量、总金属离子浓度的变化对产物的物相、形貌、电催化析氧性能的影响,并对产物进行了XRD、SEM、I/E、EIS等表征。研究结果表明,当N,N-二甲基甲酰胺用量为5 mL,总金属离子浓度为40 mmol/L时所得的Ni-Fe-V LDHs的纳米片,在1 mol/L KOH介质中,电流密度为10 mA/cm^2时,其析氧超电势仅为267 mV,具有优异的电催化析氧性能。  相似文献   

19.
兰宏宇 《广东化工》2022,(22):46-49
可再生电力驱动的催化水裂解为生产氢和氧分子提供了一种很有前途的策略,但其效率受到阳极析氧反应动力学缓慢的严重限制。非晶态催化剂表现出良好的析氧活性,非晶结构的短程有序结构能增加活性位点的数量,从而提高了非晶催化剂在析氧反应中的电催化活性,但对其潜在来源知之甚少,这阻碍了高性能非晶态析氧反应催化剂的发展。在此,我们通过一种简单手段来制备用于析氧反应的无定形钴-铁合金催化剂,同时研究了不同金属比例对非晶催化剂性能的影响。优化制备的Co0.25Fe0.75催化剂在1.0 M KOH溶液中20 mA·cm-2电流密度下的析氧过电位仅为314 mV,而且具有20 h的长期电解稳定性。  相似文献   

20.
将SiC纳米材料在浓酸中加热腐蚀制备得到小尺寸SiC颗粒,并在其上电沉积Pt后制备得到Pt/SiC复合材料。利用X射线衍射仪、透射电子显微镜和电化学测试等手段对复合材料的组成、结构和电化学性能进行表征。结果表明,SiC-4颗粒直径为几nm左右,具有较好的自催化析氢性能,Pt/SiC-4具有优异的HER性能;电流密度为10 mA/cm2时的过电位为75 mV,电流密度为100 mA/cm2时的过电位为212 mV,Tafel值为37. 57 mV/dec,双层电容值为1. 56 mF/cm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号