首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钠离子电池的研究开发在国内外处于迅速发展的浪潮中,而具有隧道结构的Na_(0.44)MnO_2作为正极材料具有既可以支持高能量密度和长循环寿命的非水电解质电池,也可以支持安全和高倍率的水溶液电解质电池的优点,成为一个重要的研究热点。本文比较系统地综述了Na_(0.44)MnO_2作为钠离子电池正极材料的研究现状,从晶体结构和充放电机理等方面进行了讨论,重点阐述了Na_(0.44)MnO_2材料的合成方法以及不同的合成方法对其结构形貌和电化学性能的影响,同时,也介绍了Na_(0.44)MnO_2材料在全电池和水系电池中的应用现状和前景以及对Na_(0.44)MnO_2正极材料掺杂和表面包覆等改性方面的研究进展,并且总结分析了改性工艺对其结构与电化学性能的影响,认为Na_(0.44)MnO_2材料对于钠离子电池仍具有极大的科研价值和应用前景。  相似文献   

2.
以KMnO_4、MnSO_4和NaOH为初始原料,利用水热软化学法制备Na_(0.44)MnO_2。XRD证实该材料具有S形孔道结构,TEM表征表明这是一种单晶纳米棒,可能有利于制备高性能正极材料。同时利用Hummers法制备石墨烯作为导电剂,通过搅拌法混合电极材料制备正极涂片。电化学测试研究显示随着的石墨烯添加量的增大,电池容量和倍率性能均得到提高。当石墨烯含量达到45%时,在0.1 A·g~(-1)电流密度下电池容量达到192.5 m Ah·g~(-1),在2.0 A·g~(-1)倍率电流密度下,其容量依然保持在123.4 m Ah·g~(-1),说明该电极材料有潜力应用于下一代高性能电池当中。  相似文献   

3.
本文采用水热法制备了超级电容器用多孔结构MnO_2电极材料,以碳纳米纤维(CNF)为模板,通过400℃热处理去除材料中的CNF,得到多孔道结构MnO_2。利用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构和形貌进行表征,通过循环伏安曲线(CV)测试了样品在0.5 mol·L-1的Na2SO4溶液中的电容性能。结果表明,CNF均匀分布在MnO_2材料中,制备的MnO_2主要呈纳米棒状结构;热处理后,部分纳米棒结构转化为颗粒状结构,且添加的CNF量越高,转化生成的颗粒状物质越多,颗粒状物质主要为Mn2O3。制备的材料在0~0.8 V(vs SCE)电位范围内主要表现为赝电容行为,添加10 wt%的CNF热处理后制备的样品比电容值最高,达到202 F·g-1。  相似文献   

4.
通过改良的溶胶–凝胶法(pH=4)制备Li_3V_2(PO_4)_3/C正极材料,然后通过聚乙烯醇(PVA)辅助的悬浮液包覆法利用不同含量的无定形MnO_2对其进行包覆改性,MnO_2的包覆量分别为0%、2%、3%和4%(质量分数)。扫描电子显微镜显示添加适量MnO_2,样品的晶粒尺寸变小且形成片层状形貌。电化学测试表明,包覆MnO_2后的电极材料性能明显好于未包覆样品,且倍率越高,改善性能越明显,当引入3%的MnO_2,正极材料具有最佳的电化学性能。该样品在0.5C倍率下室温首次放电比容量为144.4 mA·h/g,在0.1~5.0 C倍率下进行60个循环后的放电比容量为94.7 mA·h/g(容量保留率56.7%),电荷转移电阻仅为18.9?。  相似文献   

5.
采用简易的草酸盐共沉淀方法,结合后续混锂焙烧制备了锂离子电池0.5Li_2Mn O_3·0.5Li Co_(0.5)Mn_(0.5)O_2富锂锰基正极材料。利用X射线衍射、场发射扫描电镜、透射电镜、X射线光电子能谱仪、激光粒度分析仪和振实密度仪等测试表征了所制备材料的物相、形貌、元素价态和粒度分布。利用充放电测试仪对材料的电化学性能进行了测试。结果表明:在低搅拌转速条件下共沉淀法制备的样品呈规则球状形貌,球体是由许多棒状一次粒子聚集而成;在高搅拌转速条件下,所制备出的样品呈现较为分散的棒状形貌。低搅拌转速下所制备的球状颗粒样品展现出了更高的振实密度(1.7 g/cm~3)和更优异的电化学性能:0.2 C倍率条件下首次放电比容量为233.8 m A·h/g,2 C/0.2 C放电比容量比值为62.2%,0.5 C循环100次容量保持率为90.8%,倍率性能和循环稳定性能优异。  相似文献   

6.
水热法和溶剂热法是合成制备锂离子电池正极材料磷酸铁锂(LiFePO4)最常用的方法,但由于单一溶剂具有的自身缺陷使其在应用方面受到了一定的限制。而水和有机溶剂的混合溶剂热法则是在水/溶剂热法的基础上,充分利用水和有机溶剂各自的理化性质发展起来的有效方法。本文中我们选取乙二醇(EG)和水(H2O)组成二元混合溶剂来控制合成LiFePO4正极材料,并成功地获得了结构形貌规则和颗粒分散均匀的样品材料。然后,通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和电化学性能测试等手段,对获得的样品活性材料进行了表征和测试。结果显示采用混合溶剂热法获得的LiFePO4样品材料具有更好的结构形貌和电化学性能。  相似文献   

7.
采用简易的草酸盐共沉淀方法,结合后续混锂焙烧制备了锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料。利用X射线衍射、场发射扫描电镜、透射电镜、X射线光电子能谱仪、激光粒度分析仪和振实密度仪等测试表征了所制备材料的物相、形貌、元素价态和粒度分布。利用充放电测试仪对材料的电化学性能进行了测试。结果表明:在低搅拌转速条件下共沉淀法制备的样品呈规则球状形貌,球体是由许多棒状一次粒子聚集而成;在高搅拌转速条件下,所制备出的样品呈现较为分散的棒状形貌。低搅拌转速下所制备的球状颗粒样品展现出了更高的振实密度(1.7 g/cm3)和更优异的电化学性能:0.2 C倍率条件下首次放电比容量为233.8 mA·h/g,2 C/0.2 C放电比容量比值为62.2%,0.5 C循环100次容量保持率为90.8%,倍率性能和循环稳定性能优异。  相似文献   

8.
以氢氧化物前驱体Ni0.32Co0.04Mn0.44(OH)2和LiOH·H2O为原料,采用煅烧技术制备了单晶二次球形富锂锰基正极材料Li1.2Ni0.32Co0.04Mn0.44O2;以KCl为烧结助剂和掺杂物,制备了不同KCl摩尔分数的富锂锰基正极材料Li1.2-xKxNi0.32Co0.04Mn0.44O2-xClx(x分别为0.01、0.02、0.03、0.04)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱技术(XPS)、选择区域电子衍射(SEAD)、充放电测试、CV测试和EIS测试对材料结构和电化学性能进行表征,探究了不同氯化钾掺杂量对材料电化学性能的影响。结果表明,熔融的KCl不但...  相似文献   

9.
通过共沉淀法制备草酸盐前驱体,采用固相烧结法镍钴锰三元正极材料(NCM613)。采用X射线粉末衍射、扫描电子显微镜、电化学交流阻抗、恒流充放电等手段对不同氨水浓度所制备的NCM613材料结构和性能的影响。结果表明氨水浓度可以改变NCM613三元正极材料颗粒大小,从而影响循环寿命和倍率性能,氨水浓度为2%时制备的NCM613三元正极材料性能最好,在CR2032扣式电池中0.1 C倍率下首次放电容量为188.5 mAh/g,1 C倍率下充放电循环100周后容量保持率为76%。  相似文献   

10.
在Li2O-MnO2-SiO2三元系统中通过高温固相法合成具有不同配比Li2MSiO4(M=Fe、Mn等)的锂离子电池正极材料,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学性能测试表征不同配比条件下Li2MSiO4(M=Fe、Mn等)正极材料的微观结构,颗粒形貌及电化学性能。结果表明:烧结温度600℃,保温时间30 h下,Li∶Mn∶Si比例为4.04∶13.76∶1时的样品充放电比容量最高。  相似文献   

11.
采用微波辅助溶剂热法的合成途径,成功制备出镁掺杂的磷酸锰镁锂(LiMn_(1-x)Mg_xPO_4/C)电极材料。采用X-射线衍射、扫描电镜、恒电流充放电等测试方法对晶体结构,微观形态和电化学性能进行表征。结果表明微波辅助溶剂热样品LiMn_(1-x)Mg_xPO_4/C为具备较大比表面积和介孔结构的片层状形貌材料。该片层状纳米结构有利于锂离子脱嵌/镶嵌反应,Mg~(2+)掺杂在片层状纳米晶体合成过程中发挥着重要作用,可以提高材料的电化学活性和电化学表现。其中LiMn_(0.95)Mg_(0.05)PO_4/C材料在0.1 C和5 C倍率下最高可逆放电容量分别为141.2和95.3(mA·h)/g,具备较高的放电容量和倍率性能表现。与传统溶剂热法相比,微波辅助溶剂热法的反应时间显著降低且制备得到的材料具备优异的电化学性能表现,对于制备其他锂离子电池材料具有指导意义。  相似文献   

12.
三元正极材料Li(Ni-Co-Al)O2因其良好的电化学性能已经逐渐发展为替代其他传统三元正极材料的新型电极材料。本文以氨水做络合剂、氢氧化钠为沉淀剂,采用共沉淀-固相法制备Li(Ni-Co-Al)O2三元材料并用于超级电容器件研究,探究了Li(Ni-Co-Al)O2的制备条件和氧化铝包覆改性对材料超级电容性能的影响。通过X射线衍射、比表面积的表征研究制备条件对Li(Ni-CoAl)O2物化性质的影响,通过循环伏安、恒流充放电、循环倍率以及交流阻抗等电化学性能测试探究了材料的超级电容性能的影响。结果表明:采用共沉淀-固相法制备的三元Li(Ni-Co-Al)O2材料具有良好的比电容,且通过氧化铝包覆改性后材料的比电容和循环稳定性都得到了进一步的提升。  相似文献   

13.
氧化还原法制备石墨烯是已规模化的生产方法之一,制备过程中需通过干燥得到石墨烯,因此不同干燥方法对石墨烯在氧还原反应中活性的影响有所不同。以石墨为原料,通过改进的Hummers法得到氧化石墨烯(GO)溶液,再将GO溶液分别通过真空烘干干燥和真空冷冻干燥后经高温还原制备石墨烯。采用扫描电镜(SEM)、X-射线衍射(XRD)、BET比表面积测试和三电极系统电化学性能测试,比较了两种干燥方法对石墨烯的形貌、物相结构、比表面积、电化学性能及在氧还原反应中的催化活性的影响,采用Koutecky-Levich法探讨了两种干燥方法制备的石墨烯在氧还原反应中的催化机理。结果表明,相比于真空烘干干燥,真空冷冻干燥制得的石墨烯,石墨片层剥离效果优异,呈薄纱状结构,石墨化程度更高,比表面积更大。在氧还原反应中,真空冷冻干燥制得的石墨烯具有更正的起始电位、更大的极限电流密度和更高的氧还原反应催化活性,氧还原反应更接近四电子转移机制。  相似文献   

14.
采用溶胶-凝胶法合成富锂锰基(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)正极材料,考察反应pH对材料结构、形貌及电化学性能的影响。X射线衍射(XRD)分析结果表明,制备的材料(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)结晶良好,均为理想层状结构的富锂锰基材料。扫描电子显微镜(SEM)分析结果显示,pH 7.0时制得的材料颗粒细小,分散均匀。充放电性能测试结果显示,pH 7的样品具有良好的电化学性能,在2.0~4.8 V以0.05 C充放电时,首次容量达到263 m Ah/g。同时具有良好的倍率性能,1.0 C放电容量达到200 m Ah/g。  相似文献   

15.
以盐酸为掺杂剂,苯胺为单体,过硫酸钾为引发剂,用MnO_2作添加剂,以水溶液聚合法制备了导电聚苯胺/MnO_2复合电极材料。将所制备的材料制作成超级电容器用的电极片,通过对电极材料进行CV测试、阻抗测试及超级电容器充放电测试,探讨了MnO_2添加量对聚苯胺/MnO_2复合电极的电化学性能影响。结果表明,当苯胺用量为0.3 mol时,MnO_2添加量为1.5 g时所制备的聚苯胺/MnO_2复合电极材料具有最佳的电化学性能。基于该电极片的超级电容器比电容高达408 F·g~(-1)。  相似文献   

16.
《应用化工》2016,(12):2301-2304
以H_3PO_4、FeSO_4·H_2O、LiOH·H_2O为原料,乙二醇为溶剂,山梨酸为络合剂,采用溶剂热法合成了LiFePO_4/C正极材料,并研究了120,140,160℃合成温度对形貌及电化学性能影响。样品通过X射线衍射(XRD)测试表明,合成的正极材料均为纯相橄榄石结构,扫描电子显微镜(SEM)显示,样品为片状组装成哑铃型组装体,恒电流充放电测试在0.1 C下,140℃首次充放电库伦效率达到了99.8%。  相似文献   

17.
用VGCF为模板,用共沉淀方法辅助合成了棒状结构的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X-射线衍射仪(XRD)、X射线能谱仪(EDX)、扫描电子显微镜(SEM)对其结构进行了表征,并研究了其电化学性能。结果表明:该材料为棒状且表面多孔,并表现出了良好的电化学性能。在0. 2 C(1 C=170 m A/g)的电流密度下,其容量为160 m Ah/g以上,在1 C下经过250个循环后容量仍然有115. 2 m Ah/g,对于制备其他棒状结构的锂离子正极材料提供了一定的借鉴。  相似文献   

18.
采用固相法在不同的煅烧温度下(725~825℃)合成了高镍无钴LiNi0.90Mn0.10O2正极材料,并通过结构表征和电化学测试考察了煅烧温度对正极材料的结构和电化学性能的影响。结果表明,煅烧温度会改变材料的晶胞参数,在最佳煅烧温度775℃时所制得的正极材料Li+/Ni2+混排程度最低;该煅烧温度制备的样品首次放电比容量最高,同时倍率性能也表现最佳,并且在循环200圈后仍然保持着最高的放电比容量。  相似文献   

19.
以商业活性炭为载体,通过硝酸表面改性活性炭,引入含氧官能团,为棒状二氧化锰(MnO2)和活性炭的结合提供桥梁。采用化学沉淀法在炭表面反应生成纳米结构的棒状二氧化锰,制备二氧化锰/改性活性炭(MnO2/OAC)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其结构进行表征;采用循环伏安法、恒流充放电对其电化学性能进行研究。结果表明,生成的MnO2均匀地负载在碳的表面,颗粒的直径在20~50nm;在1mol/L的Na2SO4电解液中,MnO2/OAC6复合电极材料体现了极佳的比电容,达到369.7F/g。材料优异的电化学性能归功于活性炭发达的孔隙结构和MnO2提供的法拉第电容。  相似文献   

20.
富镍正极材料(LiNi0.8Co0.1Mn0.1O2)具有高容量的优点,是锂离子电池正极材料最有潜力的材料之一。为确定最佳合成条件,本工作研究了合成温度对材料性能的影响,并详细分析了材料电化学性能衰减的原因以及循环过程中材料结构的变化。采用热重/差示扫描量热法(TG/DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(HRTEM)、能谱仪(EDS)、X射线光电子能谱(XPS)等手段对合成的正极材料进行了物化表征,并对其电化学性能进行测试。结果表明,在低温段500℃保温4 h,高温段750℃保温14 h合成的正极材料NCM750在0.2 C首次放电比容量为186.2 mAh/g,首次充放电效率为82.5%,1 C放电比容量为185.1 mAh/g,100次循环后仍有175.2 mAh/g,容量保持率为95.2%。在此条件下合成的材料具有结构稳定,粒径均匀,电化学性能优异等优点,本工作对富镍正极材料的合成及结构变化进行研究,有助于加深对材料的了解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号