首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
储能系统是能源利用与转化的重要组成部分,在新能源消纳方面起着重要的作用,可有效实现电网的"削峰填谷"。为此,设计了3种不同保温层厚度和3种不同长高比(L/H)的蓄热体,采用实验方法研究了保温层厚度和蓄热体结构参数对固体蓄热装置放热特性的影响。结果表明:蓄热体与环境的温差是影响蓄热装置放热速率的主要因素;不同L/H的蓄热体放热速率明显不同,L/H=0.500时的放热速率最小,L/H=0.300时的次之,L/H=0.885时的最大。  相似文献   

2.
为缓解国家电网压力,根据国家民用建筑供暖标准:GB 50736—2012,设计了固体蓄热式供暖装置。分别开设了不同孔数的圆形或椭圆形孔道,用数值计算的方法研究了自然对流工况下,开设的孔数和孔形对蓄热装置放热特性的影响。结果表明:椭圆形孔道中心线及孔出口温度明显高于圆形孔道相应位置处温度;相同孔形,孔数越多,孔中心温度越高,越有利于放热;孔数越多,孔中心速度越小,与孔形无关;散热开始时,椭圆孔出口温度高于圆孔,但约1. 4 h后,椭圆孔出口温度开始低于圆孔,孔数对出口温度影响不大;圆形孔出口温度随时间的延长变化较为平缓。  相似文献   

3.
以相变温度为80℃的相变蓄热装置为研究对象,根据建立的相变传热分析模型,应用数值模拟的方法,研究了蓄热体——相变材料的热物性参数、几何尺寸、填充率,以及热媒体——热水的流速等因素对蓄热装置蓄、放热规律及其特性的影响.研究结果表明,当板状定形相变材料的导热系数在0.4W/(m·K)左右、板厚为8 mm、相变材料的填充率在65%~75%、热媒体流速为5~8mm/s时,蓄热装置可获得较高的蓄、放热效率.  相似文献   

4.
为清洁供暖优化用户侧电力负荷,本文根据国家民用建筑供暖标准设计固体蓄热式供暖装置,在其中分别开设了不同孔数的圆形或椭圆形孔道,用数值计算的方法研究了自然对流工况下,孔数和孔形对蓄热装置放热特性的影响。结果表明:椭圆形孔道中心线及孔出口温度明显高于圆形孔道相应位置处温度;相同孔形,孔数越多,孔中心温度越高,越有利于放热;孔数越多孔中心速度越小,其与孔形无关;散热开始时,椭圆孔出口温度高于圆孔的,但约1.4小时后,椭圆孔出口温度开始低于圆孔的,孔数对出口温度影响不大。圆形孔出口温度随时间延长变化较平缓。  相似文献   

5.
设计并搭建了套管式中高温蓄热系统实验装置,采用Mg-Cu-Zn合金相变储热材料,空气为传热介质,利用Fluent软件对该套管式蓄热装置进行了数值模拟和充放热实验,分析了传热介质流量对蓄热装置充放热特性的影响,评价了蓄热装置的放热效率。结果表明,模拟结果与实验数据吻合较好,实验结果为中高温蓄热系统的优化设计和工程应用提供了理论依据。  相似文献   

6.
石蜡相变蓄热过程数值模拟   总被引:2,自引:0,他引:2  
相变材料(PCM)相变过程的传热特性对潜热储存过程的有重要的影响.对一种圆环形柱体石蜡相变蓄热材料,分别建立了忽略液相自然对流和考虑液相自然对流相变过程的数学模型,采用FLUENT软件对其蓄热熔化过程进行数值模拟,获得石蜡熔化过程温度场分布、熔化时间以及相界面移动规律,并数值计算了石蜡水平放置和竖直放置时,熔化过程的熔化时间和温度分布.对比两种模型的模拟结果表明,当石蜡材料厚度大于40mm,熔化过程中液相中自然对流作用对熔化过程有较大的影响.  相似文献   

7.
UP树脂固化温度是随时间变化的,这个变化的关系,目前尚无数学表达式,本文通过数值分析中的曲线拟合的方法来找到相应的函数表达式。实际工作中,我们可以应用这个表达式来定量求出放热面积,对树脂固化的最终强度,硬度,收缩等远期性能作超前的定量的比较。  相似文献   

8.
9.
为掌握蓄热单元内相变材料(phase change material, PCM)的传热特性,提高相变换热器的传热效率,采用焓-孔隙率模型,利用FLUENT软件对石蜡在矩形蓄热单元内的传热过程进行数值模拟,引入单元液相分数β及无量纲FoSteRa分析圆管外不同位置处石蜡的蓄/放热规律及换热流体入口温度不同对石蜡蓄/放热过程的影响规律。结果表明:圆管外石蜡的总体熔化快慢按照上部、左/右部、下部的顺序进行,且上部比其它部分完成熔化所需时间缩短20%以上;放热过程中,圆管外石蜡的总体凝固快慢按照下部、左/右部、上部的顺序进行。矩形壳体内PCM蓄热过程的传热机制由导热逐渐过渡为自然对流。增加换热流体与石蜡之间的温差能显著提高蓄放热效率。通过多项式拟合得到关于β的准则关系式。  相似文献   

10.
为掌握蓄热单元内相变材料(phase change material, PCM)的传热特性,提高相变换热器的传热效率,采用焓-孔隙率模型,利用FLUENT软件对石蜡在矩形蓄热单元内的传热过程进行数值模拟,引入单元液相分数β及无量纲FoSteRa分析圆管外不同位置处石蜡的蓄/放热规律及换热流体入口温度不同对石蜡蓄/放热过程的影响规律。结果表明:圆管外石蜡的总体熔化快慢按照上部、左/右部、下部的顺序进行,且上部比其它部分完成熔化所需时间缩短20%以上;放热过程中,圆管外石蜡的总体凝固快慢按照下部、左/右部、上部的顺序进行。矩形壳体内PCM蓄热过程的传热机制由导热逐渐过渡为自然对流。增加换热流体与石蜡之间的温差能显著提高蓄放热效率。通过多项式拟合得到关于β的准则关系式。  相似文献   

11.
针对600 MW直接空冷凝汽器单元在受到环境风影响下,轴流风机进风量减少以及翅片管束出口温度分布不均匀的现象,采取在空冷单元风机出口和挡风墙底部同时加装平直矩形导流板的措施加以改善。运用Fluent软件对内部和外部加装不同数量导流板后的空冷单元进行了数值模拟。结果表明,在环境风影响下,空冷单元内部和外部同时加装导流板,不仅能够增加轴流风机进风量,降低翅片管束出口局部高温区的温度,而且能够使空冷单元内部流场更加均匀。  相似文献   

12.
功率器件散热技术的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在介绍散热器传统的选择方法(即根据散热器的热阻进行选择)的基础上,采用散热器优化软件对散热器进行优化设计,使得功率器件与散热器达到最佳匹配,并对散热器在选择和安装过程中的注意事项进行了阐述。  相似文献   

13.
利用陶瓷球蓄热式热交换器内固体温度分布特征值的数学表达式,类推导出蜂窝陶瓷蓄热式热交换器的特性关系式,为蜂窝陶瓷蓄热式热交换器热工行为的进一步研究、优化设计方法的建立,及蜂窝蓄热式热交换器热工行为的评价提供了理论依据.  相似文献   

14.
为探索数值模拟方法预测二元熔盐在螺旋槽管内的流动和传热特性研究中的可行性,使用Ansys软件对熔盐在不同几何参数的螺旋槽管内的流动和传热特性进行数值模拟。采用半周加热,研究在不同工况下熔盐入口温度和热流密度变化时熔盐的流动和传热特性。通过数值模拟得到了熔盐在螺旋槽管内的流动速度分布云图和矢量图,得到了熔盐在管道出口温度分布云图,并计算得到熔盐在管内的Nu-Re变化曲线。结果表明,熔盐管内流速呈现周期性变化,同时产生二次环流流动。熔盐在螺旋槽管内的传热Nu数和Re数的变化趋势一致,出口温度分布不均匀性较小。随着螺旋槽管槽深的增大,对熔盐的传热效果也相应提高。熔盐入口温度越高,螺旋槽管内熔盐的传热效果越好。  相似文献   

15.
为提高回转式空气预热器的传热性能,降低其流动阻力,需要对其内部的传热元件进行板型的优化设计。利用计算流体力学软件fluent,对回转式空气预热器几种常用传热元件的传热与流动问题进行了三维数值模拟研究。对模拟数据进行分析,得到了不同传热元件的传热特性及阻力特性曲线,通过对具体模拟数据的对比分析发现:带波纹的传热元件的换热效果较由光板组成的传热元件好;随着板型当量直径的减小,单位体积的换热面积逐渐增大,传热元件的换热效果不断提升,流动阻力不断增大;同类型板型的几何参数对其传热特性及阻力特性有较大影响。模拟结果可为传热元件的选型优化以及回转式空气预热器的设计计算提供基础数据。  相似文献   

16.
以22MnB5钢板电阻点焊电极为研究对象,基于控制体积法对其传热特性进行了数值模拟与分析.着重对其电极温度场分布以及冷却水流场分布进行了研究,探讨了电极冷却腔底面凹角、冷却水管与冷却腔底距离、冷却水管端面切角等因素对电极散热能力的影响规律,并在此基础上对电极结构进行了优化设计.结果显示,在不影响电极正常工作的前提下,优化后电极的冷却能力有显著增强,完全冷却时间较优化前减少2 s.  相似文献   

17.
基于FLUENT的管壳式换热器壳程流场数值模拟研究   总被引:3,自引:0,他引:3  
利用ANSYS参数化建模方法建立了管壳式换热器的参数化模型,在ANSYSFLUENT中对管壳式换热器壳程流体的流动与传热进行了数值模拟计算,得到换热器壳程流体温度场、速度场和压力场;分析了折流板间距及弦高对换热效率和壳程流体压降的影响,对于设计传热效率高、流体阻力小的换热器进行了有益探索。  相似文献   

18.
管内插入扭带的强化传热数值模拟   总被引:1,自引:0,他引:1  
为了定量研究管内插入扭带的强化传热方式,建立了以空气为传热介质的管内插入扭带强化传热的套管式换热器模型,进行了数值模拟研究,与实验结果相比较,在高Re的紊流流动状态下,得出了非常一致的结果.研究表明,扭转比越小,传热效果越好,同时摩擦阻力系数越大;流体温度越高,辐射传热的效果越明显,传热效果越好;压力对传热效果的影响包含在Re和Pr中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号