首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PUREX流程中,萃取剂和稀释剂在强辐照场下会发生辐解,部分辐解产物使Pu(Ⅳ)的反萃变得困难。本文通过实验研究,获取了辐解产物与Pu(Ⅳ)保留的比例关系。结果表明,辐解产物磷酸二丁酯(HDBP)与羟胺(HAN)、稀硝酸难以反萃的Pu(Ⅳ)摩尔浓度之比约为2,磷酸一丁酯(H2MBP)与HAN难以反萃的Pu(Ⅳ)的摩尔浓度之比为1~2。结合文献报导,获取了不同辐解产物在PUREX流程中的产生量,从而较系统地比较了各辐解产物对Pu(Ⅳ)反萃的影响程度,并对主要辐解产物在PUREX流程中不同Pu(Ⅳ)反萃工艺段的影响进行了讨论。结果表明:热堆乏燃料后处理流程中对Pu(Ⅳ)反萃造成影响的主要辐解产物为HDBP,快堆乏燃料后处理流程中对Pu(Ⅳ)反萃造成影响的主要辐解产物为HDBP和H2MBP。  相似文献   

2.
《同位素》2019,(6)
PUREX流程中,萃取剂和稀释剂在强辐照场下会发生辐解,部分辐解产物使Pu(Ⅳ)的反萃变得困难。本文通过实验研究,获取了辐解产物与Pu(Ⅳ)保留的比例关系。结果表明,辐解产物磷酸二丁酯(HDBP)与羟胺(HAN)、稀硝酸难以反萃的Pu(Ⅳ)摩尔浓度之比约为2,磷酸一丁酯(H_2MBP)与HAN难以反萃的Pu(Ⅳ)的摩尔浓度之比为1~2。结合文献报导,获取了不同辐解产物在PUREX流程中的产生量,从而较系统地比较了各辐解产物对Pu(Ⅳ)反萃的影响程度,并对主要辐解产物在PUREX流程中不同Pu(Ⅳ)反萃工艺段的影响进行了讨论。结果表明:热堆乏燃料后处理流程中对Pu(Ⅳ)反萃造成影响的主要辐解产物为HDBP,快堆乏燃料后处理流程中对Pu(Ⅳ)反萃造成影响的主要辐解产物为HDBP和H_2MBP。  相似文献   

3.
为有效地改善铀-镎分离效果,采用了单级反萃方法,以乙异羟肟酸为无盐配位体,对其从30%TBP中反萃Np(Ⅳ)的行为进行了较详细的研究。探讨了反萃时间、酸度、配位体浓度、相比、反萃次数、温度、HDBP浓度、放置时间、Np价态等因素的影响。实验结果表明,低碳异羟肟酸型配位体对Np(Ⅳ)有很好的配位效果。  相似文献   

4.
研究了HNO3介质中甲基膦酸二甲庚酯(DMHMP)对Pu(Ⅳ)的萃取性能,考察了DMHMP浓度、NO-3浓度、HNO3浓度以及温度对Pu(Ⅳ)分配比的影响。确定了DMHMP萃取Pu(Ⅳ)的萃合物的组成为Pu(NO3)4·2DMHMP,其萃取反应方程式为:■其中Pu(Ⅳ)与NO-3形成中性分子,再与DMHMP结合成为中性配合物进入有机相。在实验范围内Pu(Ⅳ)分配比与DMHMP浓度的平方、NO-3浓度的四次方成正比,萃取过程为放热反应,反应的焓变为-34.46 kJ/mol。  相似文献   

5.
短链羟肟酸对Pu(Ⅳ)的配位、还原及反萃   总被引:4,自引:0,他引:4  
在λ-19分光光度计上观测了加入甲羟肟酸(FHA)前后Pu(Ⅳ)-硝酸溶液的吸收光谱随时间的变化,并进行了甲、乙羟肟酸(FHA,AHA)对含铀的30%TBP/0K中Pu(Ⅳ)的反萃实验。结果表明:在硝酸溶液中短链羟肟酸能与Pu(Ⅳ)形成比较稳定的配合物,随着溶液放置时间的延长,溶液中的Pu(Ⅳ)逐渐被还原到Pu(Ⅲ),但该还原过程比较缓慢;在一定条件下,短链羟肟酸能有效地将有机相中的Pu(Ⅳ)反萃到水相,配位剂浓度的增加和反萃酸度的降低有利于短链羟肟酸对Pu(Ⅳ)的反萃。在同样条件下,AHA对Pu(Ⅳ)的反苯效果比FHA好。但这种差别随着配位剂浓度的增加和反萃酸度的降低而变小。  相似文献   

6.
研究了乙异羟肟酸(AHA)在TRPO简化流程反萃段的应用。研究结果表明,用0.5mol/L 0AHA水溶液可从30%TRPO/煤油中反萃负载的Am(Ⅲ),Eu(Ⅲ)和Pu(Ⅳ),但U(Ⅵ)不能反萃下来,藉此可以实现U与Am,Pu的分离,但所需的反萃级数较多。另外,由于负载的铁不能完全反萃,会给后续的碳酸铵反萃U(Ⅵ)带来麻烦。因此要将乙异羟肟酸用于TRPO简化流程,还必须解决铁的反萃。  相似文献   

7.
研究了U(Ⅳ)在分离的有机相(30%TBP-煤油)中、在两相振荡混合和逆流萃取过程中的稳定性。通过单级反萃实验研究了有机相中钚浓度、铀浓度,反萃剂的酸度和肼浓度,U(Ⅳ)用量(M_(u(Ⅳ))/M_(Pu)对钚反萃率的影响。通过串级实验研究了在1B槽工艺条件下,M_(u(Ⅳ))/M_(Pu)和U(Ⅳ)加入位置,反萃剂酸度和相比等条件的变化对铀钚分离的影响。给出了铀和钚的净化系数。  相似文献   

8.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

9.
采用氨基羟基脲(HSC)的硝酸水溶液研究了从30%(体积分数,下同)TBP/煤油中还原反萃高浓度四价钚(Pu(Ⅳ))的性能,并与羟胺-肼(HAN-HN)、N,N-二甲基羟胺-单甲基肼(DMHAN-MMH)在钚净化浓缩循环中反萃行为进行了对比。结果表明:在一定HSC浓度下,适当延长相接触时间、减小相比(o/a)、降低酸度和提高温度,均有利于Pu(Ⅳ)的还原反萃。HSC作为还原反萃剂,可以有效实现30%TBP/煤油中高浓钚的反萃,反萃效果较其它几种还原剂更好,有望在先进二循环流程的钚净化浓缩工艺中得到应用。  相似文献   

10.
PUREX流程中Tc(Ⅶ)对U(Ⅳ)反萃Pu(Ⅳ)的影响   总被引:2,自引:2,他引:0  
研究了Tc()对U()还原反萃Pu()的影响。研究结果表明,在单级反萃中,有机相中锝的初始质量浓度高达441mgL时,Pu()的反萃率无明显改变;两相混合放置时间足够长时,Pu()的反萃率会降低,而且开始降低的时间随锝浓度增加而缩短;体系中有机相和水相的酸浓度、Pu浓度、U()及U()浓度的变化在所研究的范围内对Pu()反萃率的影响都不大。逆流萃取的串级实验结果表明,当1BF中Tc()的质量浓度大于135mgL时,会严重影响Pu()的反萃;小于70mgL时,对Pu()的反萃无明显影响。研究还表明,引起Pu()反萃率降低的原因是肼在低价锝的催化作用下的破坏。降低Tc()含量和缩短放置时间都有助于减小PUREX流程中锝对U()反萃Pu()的影响。  相似文献   

11.
采用溶剂萃取法研究了HNO3溶液中乙异羟肟酸(AHA)与Tc(Ⅶ)的相互作用。结果表明,有AHA存在时,Tc在30%TBP/煤油HNO3体系中的分配比随反应时间下降,在实验条件下反应50 h后Tc在两相中的分配基本达到平衡,分配比DTc降至0.03,这表明Tc(Ⅶ)能被AHA还原为亲水性的低价Tc配合物[Tc(NO)(AHA)2H2O]+;溶液吸收光谱显示,反应产物在428 nm(ε=2 559 L·mol-1·cm-1)和565 nm处有吸收峰。通过溶剂萃取法得到Tc(Ⅶ)还原反应的表观反应速率方程式为r=-dc(Tc(Ⅶ))/dt=k′c(Tc(Ⅶ))c1.6(AHA),在18 ℃下,c(AHA)=1.0 mol/L,c(HNO3)=0.50 mol/L时半反应时间t1/2=16.5 h。进一步研究了溶液中有Pu(Ⅳ)存在时AHA与Tc(Ⅶ)的作用以及Tc分配比的变化。结果表明:Pu(Ⅳ)的存在会加快Tc(Ⅶ)转化为低价态亲水性配合物,而Pu的分配比在过程中基本不变。  相似文献   

12.
乙异羟肟酸与Np(Ⅳ)、Pu(Ⅳ)配合物稳定常数的测定   总被引:3,自引:1,他引:2  
研究了乙异羟肟酸(AHA)与Np()、Pu()的配位行为。研究结果表明:乙异羟肟酸在20℃、1molLHClO4中,与Np()、Pu()形成了摩尔比为1∶1的配合物。相应配合物的稳定常数对数值lgβ1分别为1134、1300。  相似文献   

13.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。  相似文献   

14.
在乙醇 水体系中 ,用乙酸乙酯和盐酸羟胺为主要原料合成了乙异羟肟酸 (AHA) ,并通过元素分析、红外光谱 (IR)、质谱 (MS)等方法对其结构进行了表征。用TTA萃取法测定了 1mol/LHNO3体系中AHA与Pu(Ⅳ ) ,Np(Ⅳ )配合物的一级累积稳定常数 ,分别为 5 3× 10 12 和 6 1× 10  相似文献   

15.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。  相似文献   

16.
研究了以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂,正十二烷为稀释剂体系对Pu(Ⅲ)、Pu(Ⅳ)和Pu(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Pu(Ⅲ)、Pu(Ⅳ)和Pu(Ⅵ)的萃取分配比大小顺序均为:D(Pu(Ⅲ))>D(Pu(Ⅳ))>D(Pu(Ⅵ)),TODGA/正十二烷体系中加入DHOA时,对Pu(Ⅲ,Ⅳ,Ⅵ)萃取具有一定抑制作用,但在较高酸度范围内(≥3.0 mol/L HNO3),不论体系中Pu的价态为何种形式,TODGA均能对其进行有效的回收。TODGA萃取Pu(Ⅲ,Ⅳ,Ⅵ)的方程式分别为: Pu3++3NO-3a+4TODGAo→Pu(NO3) 3·4TODGAo Pu4+a+4NO-3a+3TODGAo→Pu(NO3)4·3TODGAo PuO2+2a+2NO-3a+2TODGAo→PuO2(NO3)2·2TODGAo  相似文献   

17.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

18.
进行了氨基羟基脲(HSC)的硝酸水溶液对30%(体积分数,下同)磷酸三丁酯(TBP)/煤油中高浓度四价钚(Pu(Ⅳ))的还原反萃行为研究,并采用试管串级实验对HSC在钚净化浓缩循环中反萃段工艺进行了验证。结果表明:HSC能有效地实现有机相中高浓Pu(Ⅳ)的反萃;采用13级逆流反萃试管串级实验(还原反萃段10级,补充萃取段3级),对PUREX流程钚净化浓缩反萃段工艺进行了验证,在相比(2BF∶2BX∶2BS)为1∶0.25∶0.15的条件下,Pu的收率为99.99%;钚中去铀的分离因子SF(U/Pu)=3.7×105。HSC作为还原反萃剂,可以实现30%TBP/煤油中高浓度Pu(Ⅳ)的有效反萃,在钚净化浓缩循环工艺中有良好的应用前景。  相似文献   

19.
以甲酸乙酯和N-甲基盐酸羟胺为主要原料,在乙醇-水体系中合成N-甲基甲异羟肟酸(NMFHA),并通过元素分析、红外光谱、质谱分析和核磁共振波谱等方法对其结构进行表征。TTA萃取法测定结果表明,在1.0mol/LHNO3体系中,Np(Ⅳ)、Pu(Ⅳ)与NMFHA形成稳定的1∶2的配合物,其累积稳定常数分别为:β1(Np(Ⅳ))=8.83×1092(Np(Ⅳ))=1.01×10191(Pu(Ⅳ))=7.78×10102(Pu(Ⅳ))=5.80×1019。  相似文献   

20.
氨基羟基脲反萃TBP中的Np(Ⅳ)   总被引:1,自引:0,他引:1  
为有效提高铀中除镎的分离效果,对氨基羟基脲反萃30%TBP-煤油中Np(Ⅳ)的性能进行了研究,探讨了反萃剂浓度、酸度、温度、反萃时间、相比、有机相铀浓度对Np(Ⅳ)反萃率的影响。单级研究结果表明,氨基羟基脲能有效反萃TBP中Np(Ⅳ)。使用氨基羟基脲为反萃剂的台架实验结果表明,6级反萃对1BU中Np的净化系数为20。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号