首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt is made to find the effect of a hereditary structure on the physicochemical and structural properties of a solid and liquid Fe50Cr15Mo14C15B6 bulk-amorphous alloy in order to evaluate the possibility of using a precursor, i.e., a solid metal that has a genetic relation to the liquid phase, as an the initial metal of a heat involved in the formation of an amorphous structure. The structural state of the melt is estimated from the temperature dependence of the structural parameters, density, and surface tension with allowance for the validation criterion of the approximation of experimental points R 2.  相似文献   

2.
The devitrification of Mg65Cu25Tb10 bulk metallic glass (BMG) has been studied by time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) simultaneously. By analyzing the interference peaks on SAXS patterns and the Bragg peaks on WAXS patterns, it is found that devitrification initiates by activation of quenched-in short-range orders. Crystallization proceeds in three stages. During stage I, icosahedral clusters are formed that transforms to a quasi-crystalline 1/1 approximant during stage II, accompanied by the formation of cubic TbMg3. In stage III, the 1/1 approximant transforms to a 2/1 approximant. The orthorhombic CuMg2 phase is formed at a higher temperature when the quasi-crystalline phase starts to decompose. Pair distribution functions were evaluated to demonstrate these structural evolutions in real space. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

3.
Amorphous Ti50Cu28Ni15Sn7 alloy powders were synthesized by a mechanical alloying (MA) technique. Differential scanning calorimetry (DSC) results showed that, after 7 hours of exposure to the milling process, amorphous Ti50Cu28Ni15Sn7 alloy powders exhibit a wide supercooled liquid region of 61 K. Consolidation of amorphous powders were performed at a temperature slightly higher than the glass transition temperature under a pressure of ∼1.2 GPa, and bulk metallic glass (BMG) discs can be prepared successfully. However, we noticed partial crystallization during the hot pressing process and were not able to achieve full densification of BMG. The Vickers microhardness of Ti50Cu28Ni15Sn7 BMG was 634 kg/mm2, and the trace of the indentation revealed that pre-existing particle boundaries or interfaces between nanocrystals and amorphous matrix may serve as the crack initiation sites. Thus, typical brittle failure of Ti50Cu28Ni15Sn7 BMG was observed and resulted in relatively low fracture stress compared to that estimated by the microhardness. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

4.
Recently, (Fe-Co)-B-Si-Nb bulk metallic glasses (BMGs) were produced. Such BMGs exhibit high glass-forming ability (GFA) as well as good mechanical and magnetic properties. These alloys combine the advantages of functional and structural materials. The soft magnetic properties can be enhanced by nanocrystallization. To force the nanocrystallization, small content of Cu was added to the starting composition. In this article, {[(Fe0.5Co0.5)0.75Si0.05B0.20]0.96Nb0.04}100–x Cu x glassy alloys (x = 1, 2, and 3) were chosen for investigation. The GFA and the thermal stability of these alloys were evaluated. The effects of crystallization during heat-treatment processes on the phase evolution and the magnetic properties, including M s , H c , and T c , in these alloys were investigated. The phase analyses were done with the help of the X-ray diffraction patterns recorded in situ by using the synchrotron radiation in transmission configuration.  相似文献   

5.
Thermomechanical analysis (TMA) was conducted in a temperature modulated mode to analyze the effect of static and dynamic elastic compression on a Cu50Hf41.5Al8.5 bulk metallic glass. The nonreversible length changes clearly demonstrate that the elastic loading affects the thermomechanical behavior of the metallic glass. A sustained static elastic compressive load increases the relative length decrease, while a dynamic elastic load to the same maximum load and for the same time reduces the length decrease. A preliminary interpretation suggests that the static compression raises the defect of free volume level, but the dynamic compression mimics annealing and reduces the free volume level. Elastic compression thus emerges as a novel tool to control the free volume level of metallic glasses.  相似文献   

6.
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of 〈0001〉 direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.  相似文献   

7.
Multifractal analysis is used to study the deformation and fracture of a promising composite material consisting of a wire base made of K17N9M14 maraging steel covered with a surface layer made from a Co69Fe4Cr4Si12B11 amorphous alloy. As compared to its components, this material has a substantially better set of the mechanical properties.  相似文献   

8.
The Gibbs energies of formation for Cr3C2, , have been obtained from electromotive force (EMF) measurements, in the temperature range 950 to 1150 K, using the following galvanic cells with CaF2 single crystals as the electrolyte:
Extreme precautions were taken during the experimental measurements to avoid errors. The reliability and reproducibility of the values were confirmed by careful repetition of several of the experiments. The following equation has been obtained by a linear analysis of the EMF results as a function of temperature:
The generated values are compared with those reported in the literature. The values of the enthalpy of formation were evaluated by using a third-law analysis, and an average value of Δ f H°298=−71.7 kJ/mol was obtained. The ground-state energy of the hypothetic end-member compound CrC3 in the bcc structure at 0 K was calculated by using the ab initio method. The experimental results obtained, as well as the results from the ab initio calculations, were employed in a reassessment of the Cr-C system using the CALPHAD approach. A new set of parameters for the bcc phase was evaluated using first-principles calculations.  相似文献   

9.
10.
Inhibitors and oxide additives have been investigated with varying success to control high-temperature corrosion. Effect of Y2O3 on high-temperature corrosion of Superni 718 and Superni 601 superalloys was investigated in the Na2SO4-60 pct V2O5 environment at 1173 K (900 °C) for 50 cycles. Y2O3 was applied as a coating on the surfaces of the specimens. Superni 601 was found to have better corrosion resistance in comparison with Superni 718 in the Na2SO4-60 pct V2O5 environment. The Y2O3 superficial coating was successful in decreasing the reaction rate for both the superalloys. In the oxide scale of the alloy Superni 601, Y and V were observed to coexist, thereby indicating the formation of a protective YVO4 phase. There was a distinct presence of a protective Cr2O3-rich layer just above the substrate/scale interface in the alloy. Whereas Cr2O3 was present with Fe and Ni in the scale of Superni 718. Y2O3 seemed to be contributing to better adhesion of the scale, as comparatively lesser spalling was noticed in the presence of Y2O3.  相似文献   

11.
The oxidation behavior of both Pd43Cu27Ni10P20 bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 °C) to 623 K (350 °C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T < 523 K (250 °C), revealing the alloy’s favorable oxidation resistance in this temperature range. In addition, the oxidation kinetics at T ≥ 523 K (250 °C) followed a parabolic-rate law, and the parabolic-rate constants (k p values) generally increased with temperature. It was found that the oxidation k p values of the Pd4-AF are slightly lower than those of the Pd4-BMG, indicating that the porous structure contributes to improving the overall oxidation resistance. The scale formed on the alloys was composed exclusively of CuO at T ≥ 548 K (275 °C), whose thickness gradually increased with increasing temperature. In addition, the amorphous structure remained unchanged at T ≤ 548 K (275 °C), while a triplex-phase structure developed after the oxidation at higher temperatures, consisting of Pd2Ni2P, Cu3P, and Pd3P.  相似文献   

12.
13.
The effect of severe plastic deformation (SPD) by torsion and subsequent annealing on the structure and magnetic properties of the cast Nd9.5Fe84.5B6 alloy is studied. SPD by torsion is shown to lead to partial amorphization of the Nd2Fe14B phase and the precipitation of α-Fe; subsequent annealing results in the crystallization of the amorphous phase and the formation of a nanocomposite Nd2Fe14B/α-Fe structure. After SPD by torsion at 20 revolutions and annealing at 873 K, the (101) texture is formed; in this case, the coercive force is H c = 360 kA/m and the maximum energy product is (BH) max = 166 kJ/m3. The residual magnetization and the squareness ratio of the hysteretic loop of the textured alloy decrease as the ambient temperature decreases.  相似文献   

14.
15.
16.
The electrochemical behavior of amorphous and nanocrystalline soft magnetic Fe79P13Si5V3 alloy in a 0.1 M Na2SO4 solution has been studied. Mössbauer studies show that the electrochemical characteristics of the alloy are comparable with those of an Finemet Fe77Si13B7Nb2.1Cu0.9 alloy, whereas the studied alloy is inexpensive and can be prepared using natural alloy ferrophosphorus containing vanadium and silicon.  相似文献   

17.
18.
19.
20.
The stability of the reactive interface during the solid-state displacement reaction, Cu2O+Co1−X Fe X =2Cu+(Co1−X Fe X )O, is studied as a function of Co-Fe alloy composition at 1223 K. For X≤0.03, the reaction zone has a layered structure, and the cation diffusion in (Co, Fe)O is the rate-limiting step. The interface is unstable in the early stages of the reaction; the instability decreases with time as the oxide thickness increases, and the interface becomes planar at long times. The time required for the attainment of interface planarity increases with the value of X. The reaction kinetics are consistent with the available cation-diffusion data in (Co, Fe)O. For X≥0.045, the product zone is a composite of Cu+(Co, Fe)O, and the rate is limited by the oxygen transport in copper. The transition to interface instability occurs when the oxide can support a cation flux that exceeds the maximum possible oxygen flux in copper. During the reaction, composition gradients develop in (Co, Fe)O because of higher diffusion rates for iron than for cobalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号