首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The designed steel of Fe-0.25C-1.5Mn-1.2Si-1.5Ni-0.05Nb (wt pct) treated by a novel quenching-partitioning-tempering (Q-P-T) process demonstrates an excellent product of strength and elongation (PSE) at deformed temperatures from 298 K to 573 K (25 °C to 300 °C) and shows a maximum value of PSE (over 27,000 MPa pct) at 473 K (200 °C). The results fitted by the exponent decay law indicate that the retained austenite fraction with strain at a deformed temperature of 473 K (200 °C) decreases slower than that at 298 K (25 °C); namely, the transformation induced plasticity (TRIP) effect occurs in a larger strain range at 473 K (200 °C) than at 298 K (25 °C), showing better mechanical stability. The work-hardening exponent curves of Q-P-T steel further indicate that the largest plateau before necking appears at the deformed temperature of 473 K (200 °C), showing the maximum TRIP effect, which is due to the mechanical stability of considerable retained austenite. The microstructural characterization reveals that the high strength of Q-P-T steels results from dislocation-type martensite laths and dispersively distributed fcc NbC or hcp ε-carbides in martensite matrix, while excellent ductility is attributed to the TRIP effect produced by considerable retained austenite.  相似文献   

2.
The effect of thermal treatment on the microstructure and properties of pitches and thermal-treated, pitch-based TiB2/C composite cathodes were investigated. Thermal treatments were performed at 473 K, 523 K, 573 K, 623 K, and 673 K (200 °C, 250 °C, 300 °C, 350 °C, and 400 °C), respectively. The results show that the aromaticity of the treated pitches increases with an increasing thermal treatment temperature, and subsequently, the coking value and quinoline-insoluble (QI) content increase from 60.62 wt pct to 79.09 wt. pct and from 8.97 wt pct to 32.54 wt pct when the treatment temperature increases from 473 K to 623 K (200 °C to 350 °C). The volume fraction of coalesced mesophase in semicoke decreases with an increasing thermal treatment temperature, and after 673 K (400 °C) is reached, the coalesced mesophase is almost invisible. The bulk density and compressive strength of modified pitch-based cathodes increase with an increasing thermal treatment temperature from 2.24 g cm−3 to 2.39 g cm−3 and from 24.21 MPa to 54.85 MPa, whereas open porosity decreases from 34.62 pct to 27.06 pct. Both electrical resistivity and electrolysis expansion ratio first decrease and then increase with an increasing thermal treatment temperature, and the lowest values (45.63 μΩ m and 0.65 pct) are achieved at 573 K (300 °C). Compared with those of the parent pitch-based cathode, the properties of the modified pitch-based cathodes had improved significantly. The mechanisms of the improvements are discussed in the text.  相似文献   

3.
The dry sliding wear tests of H13 steel were performed under atmospheric conditions under various ambient temperatures and loads; the wear performances and the wear mechanisms were studied. At room temperature (RT), the wear loss of the steel gradually increased with increasing the load. An adhesive wear prevailed with little tribo-oxides on the worn surfaces. Under the atmospheric conditions at 473 K (200 °C) and a load of 100 N or above, a mild oxidation wear prevailed with about 20-μm thickness of tribo-oxide layer forming on the asperities of worn surfaces. The wear loss first reduced and then slightly increased with increasing the load. Compared with the other ambient temperatures, the wear at 473 K (200 °C) retained the lowest wear loss due to the protection of the tribo-oxide layer. As the ambient temperature reached 673 K (400 °C), the wear loss increased with increasing load, leading to higher wear than those observed at RT and at 473 K (200 °C). The predominant wear mechanism at 673 K (400 °C) was oxidation wear, unlike mild oxidation wear, which dominated at 473 K (200 °C).  相似文献   

4.
Dynamic recrystallization (DRX) behavior in hot deformed (by uniaxial compression in a thermomechanical simulator in the temperatures range 1173 K to 1373 K [900 °C to 1100 °C]) Ti-modified austenitic stainless steel was studied using electron back scatter diffraction. Grain orientation spread with a “cut off” of 1 deg was a suitable criterion to partition dynamically recrystallized grains from the deformed matrix. The extent of DRX increased with strain and temperature, and a completely DRX microstructure with a fine grain size ~4 μm (considering twins as grain boundaries) was obtained in the sample deformed to a strain of 0.8 at 1373 K (1100 °C). The nucleation of new DRX grains occurred by the bulging of the parent grain boundary. The DRX grains were twinned, and a linear relationship was observed between the area fraction of DRX grains and the number fraction of Σ3 boundaries. The deviation from the ideal misorientation of Σ3 boundaries decreased with an increase in the fraction of Σ3 boundaries (as well as the area fraction of DRX) signifying that most Σ3 boundaries are newly nucleated during DRX. The generation of these Σ3 boundaries could account for the formation of annealing twins during DRX. The role of Σ3 twin boundaries on DRX is discussed.  相似文献   

5.
The temperature dependence of the microwave absorption of conventionally heated nonstoichiometric ferrous oxide (Fe0.925O) was characterized via the cavity perturbation technique between 294 K and 1373 K (21 °C and 1100 °C). The complex relative permittivity and permeability of the heated Fe0.925O sample slightly change with temperature from 294 K to 473 K (21 °C to 200 °C). The dramatic variations of permittivity and permeability of the sample from 473 K to 823 K (200 °C to 550 °C) are partially attributed to the formation of magnetite (Fe3O4) and metal iron (Fe) from the thermal decomposition of Fe0.925O, as confirmed by the high-temperature X-ray diffraction (HT-XRD). At higher temperatures up to 1373 K (1100 °C), it is found that Fe0.925O regenerates and remains as a stable phase with high permittivity. Since the permittivity dominates the microwave absorption of Fe0.925O above 823 K (550 °C), resulting in shallow microwave penetration depth (~0.11 and ~0.015 m at 915 and 2450 MHz, respectively), the regenerated nonstoichiometric ferrous oxide exhibits useful microwave absorption capability in the temperature range of 823 K to1373 K (550 °C to 1100 °C).  相似文献   

6.
The wear behavior and mechanisms of a Cr-Mo-V cast hot-working die steel with three microstructures (tempered martensite, troostite, and sorbite) were studied systematically through the dry-sliding wear tests within a normal load range of 50 to 300 N and an ambient temperature range of 298 K to 673 K (25 °C to 400 °C) by a pin-on-disk high-temperature wear machine. Five different mechanisms were observed in the experiments, namely adhesive, abrasive, mild oxidative, oxidative, and extrusive wear; one or more of those mechanisms would be dominant within particular ranges of load and temperature. The transition of wear mechanisms depended on the formation of tribo-oxides, which was related closely to load and temperature, and their delamination, which was mainly influenced by the matrix. By increasing the load and ambient temperature, the protective effect of tribo-oxides first strengthened, then decreased, and in some cases disappeared. Under a load ranging 50 to 300 N at 298 K (25 °C) and a load of 50 N at 473 K (200 °C), adhesive wear was the dominant wear mechanism, and abrasive wear appeared simultaneously. The wear was of mild oxidative type under a load ranging 100 to 300 N at 473 K (200 °C) and a load ranging 50 to 150 N at 673 K (400 °C) for tempered martensite and tempered troostite as well as under a load of 100 N at 473 K (200 °C) and a load ranging 50 to 100 N at 673 K (400 °C) for tempered sorbite. At the load of 200 N or greater, or the temperatures above 673 K (400 °C), oxidative wear (beyond mild oxidative wear) prevailed. When the highest load of 300 N at 673 K (400 °C) was applied, extrusive wear started to dominate for the tempered sorbite.  相似文献   

7.
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe-Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.  相似文献   

8.
Two medium carbon low-alloy MnSiCrB cast steels containing different Cu contents (0.01 wt pct and 0.62 wt pct) were designed, and the effect of Cu on the mechanical properties and corrosion–abrasion wear behavior of the cast steels was studied. The results showed that the low-alloy MnSiCrB cast steels obtained excellent hardenability by a cheap alloying scheme. The microstructure of the MnSiCrB cast steels after water quenching from 1123 K (850 °C) consists of lath martensite and retained austenite. After tempering at 503 K (230 °C), carbides precipitated, and the hardness of the cast steels reached 51 to 52 HRC. The addition of Cu was detrimental to the ductility and impact toughness but was beneficial to the wear resistance in a corrosion–abrasion wear test. The MnSiCrB cast steel with Cu by the simple alloying scheme and heat treatment has the advantages of being high performance, low cost, and environmentally friendly. It is a potential, advanced wear-resistant cast steel for corrosion–abrasion wear conditions.  相似文献   

9.
The effect of the addition of Si or Mn to ASTM F75 Co-28Cr-6Mo-0.25C alloys on precipitate formation as well as dissolution during solution treatment was investigated. Three alloys—Co-28Cr-6Mo-0.25C-1Si (1Si), Co-28Cr-6Mo-0.25C-1Mn (1Mn), and Co-28Cr-6Mo-0.25C-1Si-1Mn (1Si1Mn)—were heat treated from 1448 K to 1548 K (1175 °C to 1275 °C) for a holding time of up to 43.2 ks. In the case of the as-cast 1Si and 1Si1Mn alloys, the precipitates were M23C6-type carbide, η phase (M6C-M12C–type carbide), and π phase (M2T3X-type carbide with a β-Mn structure), while in the case of the as-cast 1Mn alloy, M23C6-type carbide and η phase were detected. The 1Si and 1Si1Mn alloys required longer heat-treatment times for complete precipitate dissolution than did the 1Mn alloys. During the solution treatment, blocky dense M23C6-type carbide was observed in all the alloys over the temperature range of 1448 K to 1498 K (1175 °C to 1225 °C). At the heat-treatment temperature of 1523 K (1250 °C), starlike precipitates with stripe patterns—comprising M23C6-type carbide and metallic face-centered-cubic (fcc) γ phase—were detected in the 1Si and 1Si1Mn alloys. A π phase was observed in the 1Si and 1Si1Mn alloys heat treated at 1523 K and 1548 K (1250 °C and 1275 °C) and in the 1Mn alloy heat treated at 1548 K (1275 °C); its morphology was starlike-dense. The addition of Si appeared to promote the formation of the π phase in Co-28Cr-6Mo-0.25C alloys at 1523 K and 1548 K (1250 °C and 1275 °C). Thus, the addition of Si and Mn affects the phase and morphology of the carbide precipitates in biomedical Co-Cr-Mo alloys.  相似文献   

10.
The notched tensile strength (NTS) and impact toughness of Ti-15V-3Cr-3Sn-3Al (β-type titanium alloy Ti-15-3) laser welds aged at temperatures ranging from 590 K to 866 K (317 °C to 593 °C) were determined, and the results were compared to those of unwelded Ti-15-3 plates aged at the same temperature. At a given aging temperature, α precipitates in welded specimens were finer and exhibited higher hardness than those in unwelded specimens. Among the tested specimens, the weld aged at 644 K (371 °C) was most susceptible to notch sensitivity. In those welds aged at or above 755 K (482 °C), the coarse columnar structure was prone to interdendritic fracture during notched tensile tests, which reduced the NTS of the weld relative to that of the unwelded plate aged at an equivalent temperature. Of the tested specimens, the weld that was not subjected to the postweld aging treatment possessed the highest impact toughness among the specimens.  相似文献   

11.
An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4 μm. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10−4 to 10−1 s−1. The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.  相似文献   

12.
The constitutive flow behavior of sintered cobalt in the temperature range 873 to 1473 K (600 to 1200 °C) and at strain rates from 0.001 to 10 s−1 has been studied using constant true strain rate hot compression tests. On the basis of these data, a processing map has been generated that depicts the variation of strain rate sensitivity with temperature and strain rate. The processing map reveals a domain of dynamic recrystallization (DRX) with an optimum condition of processing at 1273 K (1000 °C) and at 10−3 s−1. When deformed within the domain, the stress-strain curves exhibit a single peak followed by flow softening, leading to steady-state behavior. In addition to this, a recently developed approach based on flow curve analysis is used to study the DRX kinetics, which is found to follow an Avrami-type relation.  相似文献   

13.
An investigation was conducted into the effects of annealing temperature on microstructure and tensile properties of ferritic lightweight steels. Two steels were fabricated by varying the C content, and were annealed at 573 K to 1173 K (300 °C to 900 °C) for 1 hour. According to the microstructural analysis results, κ-carbides were formed at about 973 K (700 °C), which was confirmed by equilibrium phase diagrams calculated from a THERMO-CALC program. In the steel containing low carbon content, needle-shaped κ-carbides were homogeneously dispersed in the ferrite matrix, whereas bulky band-shaped martensites were distributed in the steel containing high carbon content. In the 973 K (700 °C)-annealed specimen of the steel containing high carbon content, deformation bands were formed throughout the specimen, while fine carbides were sufficiently deformed inside the deformation bands, thereby resulting in the greatest level of strength and ductility. These results indicated that the appropriate annealing treatment of steel containing high carbon content was useful for the improvement of both strength and ductility over steel containing low carbon content.  相似文献   

14.
Isothermal flow curves were determined for aluminum alloy 2024-0 at temperatures of 145 to 482 °C and at constant true-strain rates of 10-3 to 12.5 s-1 using compression tests of cylindrical specimens. The average pressure was corrected for friction and for deformation heating to determine the flow stress. At 250 °C and above, the isothermal flow curves usually exhibited a peak followed by flow softening. At 145 °C the flow curves exhibited strain hardening. For 250 °C≦ T<= 482 °C, 10-3 s-1 ≦ ≦ 12.5 s-1, and ε ≦ 0.6 the flow behavior was represented by the constitutive equation σ =K (T, ε) where logK andm are simple functions of temperature and strain. The as-deformed microstructures generally supported the idea that flow softening in Al 2024-0 is caused by dynamic recovery. At the higher temperatures and strain rates, however, fine recrystallized grains were observed in local areas near second phase particles and at as-annealed grain boundaries. At 482 °C, there was evidence of re-dissolution of the CuMgAl2 precipitate. Formerly Visiting Associate Professor, Wright State University, Dayton, OH 45435 Formerly a Mechanical Systems Engineering Student at Wright State University Formerly a Materials Engineering Student at Wright State University Formerly Director, Metallurgy Program, National Science Foundation, Washington, DC  相似文献   

15.
We discovered a eutectoid reaction in an Fe-13.4Mn-3.0Al-0.63C (wt pct) steel after solution heat treatment at 1373 K (1100 °C) and holding at temperatures below 923 K (650 °C). The steel is single austenite at temperatures from 1373 K to 923 K (1100 °C to 650 °C). A eutectoid reaction involves the replacement of the metastable austenite by a more stable mixture of ferrite and M23C6 phases at temperatures below 923 K (650 °C). The mixture of ferrite and M23C6 is in the form of pearlitic lamellae. The morphology of the lamellae of the product phases is similar to that of pearlite in steels. Thus, we found a new pearlite from the eutectoid reaction of the Mn-Al steel featuring γ  → α + M23C6. A Kurdjumov–Sachs (K-S) orientation relationship exists between the pearlitic ferrite (α) and M23C6 (C6) grains, i.e., (110)α // (111)C6 and [[`1] \overline{1} 11]α // [0[`1] \overline{1} 1]C6. The upper temperature limit for the eutectoid reaction is between 923 K and 898 K (650 °C and 625 °C).  相似文献   

16.
Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, and Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO2-AgO mixed oxide, being 4 nm at 773 K (500 °C). Field emission–scanning electron microscopic (FE-SEM) and atomic force microscopic (AFM) images revealed that the deposited thin films had nanostructured and nanoporous morphology with columnar topography. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response toward low concentrations of CO gas (i.e., 25 ppm) at low operating temperature of 473 K (200 °C), resulting in an increase of the thermal stability of sensing films as well as a decrease in their power consumption. Furthermore, TiO2-AgO sensors follow the power law for the detection of CO gas.  相似文献   

17.
Over the past decade, interest in shape-memory-alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently, we showed that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55?wt?pct?Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to (1) ascertain whether increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 386?K (113?°C), and (2) determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50?to 300?MPa using upper-cycle temperatures of 438?K, 473?K, 503?K, 533?K, 563?K, 593?K, and 623?K (165?°C, 200?°C, 230?°C, 260?°C, 290?°C, 320?°C, and 350?°C). The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 563?K (290?°C). In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape-memory alloys for optimal performance.  相似文献   

18.
The tracer diffusion coefficients of the elements as well as the integrated interdiffusion coefficients are determined for the Cu3Sn and Cu6Sn5 intermetallic compounds using incremental diffusion couples and Kirkendall marker shift measurements. The activation energies are determined for the former between 498 K and 623 K (225 °C and 350 °C) and for the latter between 423 K and 473 K (150 °C and 200 °C). Sn is found to be a slightly faster diffuser in Cu6Sn5, and Cu is found to be the faster diffuser in Cu3Sn. The results from the incremental couples are used to predict the behavior of a Cu/Sn couple where simultaneous growth of both intermetallics occurs. The waviness at the Cu3Sn/Cu6Sn5 interface and possible reasons for not finding Kirkendall markers in both intermetallics in the Cu/Sn couple are discussed.  相似文献   

19.
The precipitation of phases in the Al-Fe-Si system has been studied using differential scanning calorimetry (DSC) and thermoelectric power (ΔS) in homogenized and deformed by rolling samples. Two predominant associated effects being observed on homogenized samples: the first one, after precipitation of Fe and Si at temperatures lower than 673 K (400 °C) and the second, the Al3Fe phase, at a temperature close to 773 K (500 °C). In DSC, the effect of severe deformation by rolling is manifest in two ways: (1) displacing the peaks reported in homogenized samples and (2) introducing two new exothermic transformations associated with the processes of recovery and recrystallization. In ΔS, the two transformations are maintained, although displaced and magnified by the effect of a faster and more abundant Fe precipitation. The isoconversional method is used to calculate the activation of precipitated phases.  相似文献   

20.
A direct die-filling thixoforging method is designed to fabricate aluminum thin plates with a pattern of microchannels in a single forming operation. Extruded AA2024 and AA7075 wrought aluminum billets are used. A recrystallization and partial remelting process is used to prepare the semisolid slurries required for the forming process. Under a thixoforging pressure of 70 MPa, AA7075 thin plates are successfully thixoforged in a temperature range of 883 K to 893 K (610 °C to 620 °C), corresponding to liquid fractions of ~30 to 50 pct in the semisolid slurry. AA2024 thin plate requires a thixoforging temperature range of 888 K to 898 K (615 °C to 625 °C), corresponding to the liquid fractions of ~45 to 60 pct. Final microstructures of the thin plates comprise primary α-Al equiaxed globular grains in a matrix of a solidified liquid phase. With increasing thixoforging temperature, the yield strength values continuously decrease. The ultimate tensile strength (UTS) values of the thin plates initially decrease with increasing thixoforging temperature from 883 K to 888 K (610 °C to 615 °C) and from 888 K to 893 K (615 °C to 620 °C) for the AA7075 and AA2024 thin plates, respectively. The UTS values stabilize and slightly enhance when the thixoforging temperatures are further increased to 893 K and 898 K (620 °C and 625 °C) for the AA7075 and AA2024 thin plates, respectively. Very brittle behavior (elongation value of ~1 pct) is observed for the AA7075 thin plates thixoforged at 883 K and 888 K (610 °C and 615 °C). The elongation value increases to 3 pct with increasing the thixoforging temperature to 893 K (620 °C). In contrast, larger elongation values (between 4 and 6 pct) are achieved for the AA2024 thin plates. Increasing the thixoforging pressures from 70 to 100 MPa and then to 150 MPa improves the tensile properties of the thin plates. The tensile properties of the thixoforged thin plates are linked to their microstructural characteristics and processing conditions and are discussed here in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号