首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Using a gas-atomized Ni59.35Nb34.45Sn6.2 metallic glassy alloy powder blended with Sn powder of various contents, Ni-Nb-Sn bulk metallic glassy matrix composites were fabricated by a microwave (MW)–induced sintering process in a single-mode 2.45 GHz MW applicator in a separated magnetic field. The Ni59.35Nb34.45Sn6.2 glassy alloy powder and its mixed powders containing Sn particles could be heated well in the magnetic field. The addition of Sn particles promoted densification of the sintered Ni59.35Nb34.45Sn6.2 metallic glassy powder. Bulk samples without crystallization of the glassy matrix and with good bonding state among the particles were achieved at a sintering temperature of 833 K.  相似文献   

2.
The corrosion behavior study was conducted on a novel Fe_(77)Mo_5P_9C_(7.5)B_(1.5)in-situ metallic glass matrix composite(MGMC).This composite sample was developed by introduction of bccα-Fe dendrites as reinforcing phase.The corrosion behavior of this composite was compared to its monolithic counterpart and other Fe-based alloys such as 304 Land 2304Lstainless steels.The corrosion resistance of MGMCs in H_2SO_4 solution shows inferior to that of other Fe-based alloys.Experiments suggest that Fe-BMGs samples possess better corrosion resistance property than that of Fe-MGMCs.The possible underlying reasons can be the inhomogeneity induced by the precipitation ofα-Fe dendrites in the MGMCs.  相似文献   

3.
In situ Ti-based metallic glass matrix composites are fabricated by the Bridgman solidification, and the mechanical properties are investigated. The fine dendrites about 2 to 10 μm are uniformly distributed in the glass matrix. The compressive results show that the composites have high strength and large plasticity. The fracture strength for the composite at the withdrawal velocity of 1.6 mm/s is as high as 3000 MPa and the total fracture strain is up to 31.5 pct. Particularly, the dendrite size of the current composite would decrease with the increasing of the withdrawal velocity, which leads to the higher yield strength.  相似文献   

4.
Metallurgical and Materials Transactions A - The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs)....  相似文献   

5.
In this study, new Ti-based metallic glass matrix composites (MGMCs) are fabricated, which contains ~41 vol pct of large dendrites with a size of ~0.8 to 1.2 μm, The newly developed Ti-based MGMCs exhibit excellent tensile strength of ~1650 MPa and a tensile strain of ~2.5 pct at room temperature. During tensile deformation, the work hardening is scarcely found in this alloy. Thus, the deformation of the in situ MGMC is simply described with two stages: (1) elastic and (2) softening deformation stages. Two simple models are adapted to simulate each stage. In the supercooled liquid region [at 613 K (340 °C)], superplastic homogeneous deformation, which is the feature of monolithic bulk metallic glasses, is not observed. The mechanical properties at 613 K (340 °C) are sensitive to the strain rates, the yield strength drops from 1390 to 960 MPa, when the strain rate decreases from 1 × 10?2 to 1 × 10?3/s, while the displacement is almost increased by twofold.  相似文献   

6.
7.
The tribological properties of the in-situ dendrite-reinforced metallic glass matrix composite (Ti42 Zr22 V1 4-Cu5 Be1 7 )prepared by copper mould casting were analyzed at different normal loads under the dry condition and rain-water.The results showed that the average value of the frictional coefficients and micro-hardness ascended with in-creasing the normal load,while the wear rate showed a trend of decline under the dry condition.The electrochemical test results showed that the surface of samples was pitting corroded in the rainwater.The matrices were corroded first.Then the dendrites were exposed,leading to the damage of the surface.Both the frictional coefficients and wear rate of the composite in the rainwater were larger than those under the dry condition,primarily owing to the corro-sion of chloride ions on the worn surface.The wear mechanisms of composites were mainly adhesive wear,accompa-nied by the abrasive wear under the dry condition and corrosive wear in the rainwater.The composites have higher wear resistance both under the dry condition and rainwater due to the lower wear rate.  相似文献   

8.
The three-dimensional morphology of crystalline plates that form in as-cast Mg65+x (Cu0.667Y0.333)30–x Zn5 (x = 6, 12, 14, and 16) bulk metallic glass (BMG) composites was investigated by focused ion beam (FIB) tomography. The size, shape, and distribution of the plates were found to be dependent both on alloy composition and cooling rate of the melt, whereby rapid cooling and lower x values generated a lower volume fraction of plates due to a decreased propensity for crystallization. Using FIB tomography, it was demonstrated that these plates may nucleate at micron-sized cuboidal, spherical, and irregularly shaped particles that form first during the casting process. The plates subsequently grow in preferential directions during cooling of the alloy to below the glass transition temperature to ultimately generate a multivariant, interwoven crystalline structure throughout the amorphous matrix. This complex structure is argued to contribute to the improved toughness of the alloy by hindering the propagation of gross shear bands and promoting the formation of multiple shear bands.  相似文献   

9.
应变速率对锆基非晶复合材料力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用铜模吸铸法制备出直径3mm的[Zr0.72+x(Cu0.59Ni0.41)0.28-x]88Al12(x=0.05、0.10)棒状非晶复合材料。考察应变速率对合金压缩力学性能的影响。结果表明,随应变速率的增大,合金的塑性变形区域减小,锯齿流变现象逐渐消失;在相同成分下,随应变速率的增大,弹性模量逐渐升高,塑性应变和抗压强度则逐渐降低,屈服强度和断裂强度也基本呈下降趋势。在x=0.05、应变速率为0.55×10-4s-1时,塑性应变、抗压强度和断裂强度均为最大值,分别为6.77%、1 758MPa和1 629MPa。  相似文献   

10.
玻璃铝基复合材料高温压缩流变行为研究   总被引:2,自引:0,他引:2  
利用Cleeble-1500对玻璃铝基复合材料在温度为573—723K、应变速率为0.01s^-1~10s^-1的条件下进行高温压缩变形行为的研究。结果表明,应变速率和变形温度变化强烈影响复合材料的流变应力,流变应力随变形速率的提高而增大,随变形温度的升高而降低;玻璃铝基复合材料高温塑性变形时的流变行为可用Zener·Hollomon参数的双曲正弦函数来描述。  相似文献   

11.
利用Gleeble-1500对玻璃铝基复合材料在温度为573~723K、应变速率为0.01s^-1~10s^-1的条件下进行高温压缩变形行为的研究。结果表明:应变速率和变形温度的变化强烈影响复合材料的流变应力,流变应力随变形速率的提高而增大,随变形温度的升高而降低;玻璃铝基复合材料高温塑性变形时的流变行为可用Zener-Hollomon参数的双曲正弦函数来描述。  相似文献   

12.
Fracture and deformation characteristics of the Ti-based metallic glass matrix composite have been studied by the tensile test and the in situ TEM tension test. Typically, the composite exhibits the high strength and considerable plasticity. Microscopically, it was found that shear deformation zone formed at the crack tip in glass phase, which can bring about quick propagation of shear bands. However, the plastic deformation zone nearby the crack tip in dendrites will postpone or retard the crack extension by dislocations. The attributions of micro-deformations to mechanical properties of composites were discussed.  相似文献   

13.
14.
Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been systematically studied yet.The interactions between the primary shear bands(PSBs)and secondary shear bands(SSBs)in a ductile Zr-based MG were studied.The residual stress near PSBs can deflect the propagation direction and reduce the propagation velocity of SSBs,which contributes to the plasticity and toughness of the MG.It was demonstrated that the probability and strength of the interactions between PSBs and SSBs would become stronger for MGs with larger Young′s modulus and smaller shear modulus,i.e.,larger Poisson′s ratio.These results are valuable in understanding the plastic deformation of MGs and may be helpful in designing new MGs with desirable mechanical properties.  相似文献   

15.
In the present study, dynamic fracture experiments are performed on fully amorphous Liquidmetal-1 (LM-1), a Zr-based BMG, to better understand fracture initiation and propagation in notched specimens. Experiments are conducted on notched (110 μm notch radius) four-point bend specimens using an instrumented modified split-Hopkinson pressure bar apparatus. The results of these experiments suggest that the critical dynamic stress intensity factor achieved by the notched LM-1 specimens is ~110 MPa m1/2, which is similar to the fracture toughness determined from previous quasi-static fracture experiments. This insensitivity of the fracture toughness to crack tip loading rate suggests negligible loading-rate sensitivity on the dynamic fracture initiation toughness in LM-1. In situ high-speed camera images of the notched sample during the dynamic loading process show multiple fracture initiation attempts and subsequent arrests prior to catastrophic fracture initiation. Controlled stress wave loading experiments designed to induce sub-critical levels of damage in the notched specimens show extensive deformation banding extending 150 to 200 μm outward from the notch. The deformation bands, nominally perpendicular to each other, run along the direction of the notch and perpendicular to it. They are consistent with slip-line fields in notched samples of elastic perfectly plastic materials. Subsequent loading of the damaged specimen again shows several attempts at crack initiation followed by blunting; the initial sub-critical damage in the region around the notch is understood to increase the energy required for catastrophic specimen failure and is consistent with an increase in the effective notch radius due to preexisting damage.  相似文献   

16.
A process combining cooling slope casting and suction casting was developed to generate a semisolid structure in a Zr-based bulk metallic glass matrix composite. The melt was injected onto a cooling slope and subsequently vacuum sucked into a cylindrical copper mold placed at the end of the slope. The structure obtained for 4-mm-diameter specimens of composition Zr66.4Nb6.4Cu10.5Ni8.7Al8 consists of a dispersion of spheroidal and rosettelike bcc crystals in a glassy matrix. Various slope angles, slope lengths, and injection pressures were tested. The coarsest and most spheroidal crystal structure was obtained at short slope lengths and high injection pressures. Microstructure analysis suggests that the slope is the location of extensive crystal nucleation and possible fragmentation, while the microstructure’s morphological evolution seems to occur mainly in the mold. The semisolid structure is expected to confer improved mechanical properties and ductility to the composite material.  相似文献   

17.
The nanoscale shear band operation process of Zr_(55)Pd_(10)Cu_(20)Ni_5Al_(10) metallic glass(MG)was reined in by constant force during well-designed loading-holding-unloading cyclic microcompression test.Through the test,it is revealed that the whole shear banding process involves three stages:shear band initiation,shear sliding and shear band arrest.Based on the energy balance principle,the size-affected speed of shear sliding is interpreted.The energy originated from the shear sliding leads to heat-up of the shear plane;therefore,the temperature in shear band increases with the size of shear offset caused by the energy accumulation during shear sliding.Taking the glass transition temperature as the critical temperature of fracture for the Zr-based MG,the critical shear offset is predicted to be approximately 190μm,fully in line with the experimental observation.This directly proved that the fracture of the MG is caused by the temperature rise during shear sliding.  相似文献   

18.
研究体积分数为60%的连续钨丝/Zr41.2Ti13.8Cu12.5Ni10Be22.5块体金属玻璃复合材料准静态压缩变形过程中剪切带的演化过程。发现在弹性变形段不形成剪切带,剪切带是在塑性变形过程中产生并发展的,且剪切带的数量随着变形量的增加而增大,间距随着变形量的增加而减小;当间距减小到一定值时产生剪切裂纹并不断扩展,最终导致断裂破坏。  相似文献   

19.
Laser processing is a precision manufacturing technique capable of producing materials with highly nonequilibrium microstructures. Due to the localized heat input and high cooling rate inherent to the process, this technology is attractive for the production of metallic glasses. In the present work, we use a laser deposition process to deposit a Zr-based metallic glass forming powder on both amorphous and crystalline substrates of the same nominal composition. Amorphous melt zones are observed surrounded by distinct crystalline heat-affected zones (HAZs). Detailed examination of the HAZ in the glassy substrates reveals the formation of microscale spherulites, in contrast to the nanocrystalline phases observed following crystallization by isothermal annealing of the glass at the crystallization temperature as well as in the HAZ of the crystalline substrates. The spherulites have a different crystal morphology and structure from the nanocrystalline phases, indicating that the more stable nanocrystalline phases are completely bypassed when the glass is devitrified at the higher heating rate. Reducing the heat input during laser processing results in the near elimination of the crystalline HAZ in the amorphous substrates, suggesting that a critical heating rate range is required to avoid devitrification.  相似文献   

20.
Optimizing the structural reliability of bulk metallic glass (BMG) components demands a detailed understanding of the atomic structure of the glass, particularly the defects that control plastic flow. These defects are thought to be associated with regions of low atomic density, which facilitate the required diffusion-like atomic rearrangement processes. In the present article, the distribution of low-density regions in a simulated Cu-Zr glass is studied with two different techniques. Using a hard-sphere model, the interstitial volume distribution was obtained by constructing Voronoi polyhedra around each atom and inserting spheres into the unoccupied regions at the vertices. The volumes of touching spheres were summed and corrected for any overlap to obtain the size distribution of the unoccupied sites. The resulting distribution is in good agreement with Cohen and Turnbull’s free volume model and provides insight into how a single free volume site may be described. However, this model depends significantly on the somewhat arbitrary selection of the hard-sphere atomic radii and may not give a realistic indication of the shape or connectivity of the low atomic-density regions. Recent experimental studies of the open volume distribution using positron annihilation spectroscopy probe the electron and not the atomic density. We therefore propose a novel method to identify low-density regions from ab initio calculated radially averaged electron-density distributions, which allows a more physical and less ambiguous identification of low-density areas and, at the same time, connects atomic and electron distributions. Our results show that the qualitative volume distribution from the electron-density model agrees well with the hard-sphere model, while allowing a more physical quantitative analysis. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号