共查询到20条相似文献,搜索用时 0 毫秒
1.
SOFC composite electrodes of yttria-stabilized zirconia (YSZ) and either LaNi0.6Fe0.4O3 (LNF) or La0.91Sr0.09Ni0.6Fe0.4O3 (LSNF) were prepared by infiltration to a loading of 40 wt% of the perovskite into porous YSZ using aqueous solutions of the nitrate salts. XRD measurements indicated that the perovskite structures were formed following calcination at 850 °C, at which temperature the LNF and LSNF form small particles that coat the YSZ pores. Heating to 1100 °C causes the particles to form a dense film over the YSZ but caused no solid-state reaction. Calcination of an LNF-YSZ composite to 1200 °C led to an expansion of the LNF lattice, suggesting introduction of Zr(IV) into the perovskite; further heating to 1300 °C caused the formation of La2Zr2O7. For 850 °C calcination, the electrode performance of both LNF-YSZ and LSNF-YSZ composites was similar to that reported for composites of YSZ and La0.8Sr0.2FeO3 (LSF), with a current-independent impedance of approximately 0.1 Ω cm2 at 700 °C in air. For 1100 °C calcination, both LNF-YSZ and LSNF-YSZ composites exhibited impedances that decreased strongly under both anodic and cathodic polarization. The implications of these results for preparing electrodes based on LNF and LSNF are discussed. 相似文献
2.
Yunhui GongWeijie Ji Lei ZhangMing Li Bin XieHaiqian Wang Yousong JiangYizhou Song 《Journal of power sources》2011,196(5):2768-2772
Application of La0.6Sr0.4Co0.2Fe0.8O3 perovskites cathode in solid oxide fuel cell (SOFC) can benefit from its high electrocatalytic activity at 600-800 °C. However, due to the chemical and mechanical incompatibility between the LSCF cathode and state-of-the-art yttria stabilized zirconia (YSZ) electrolyte, a ceria-based oxide barrier interlayer is usually introduced. In this work, gadolinia doped ceria (GDC) interlayers are prepared by screen printing (SP), electron beam evaporation (EB) and ion assisted deposition (IAD) methods. The microstructures of the GDC interlayers show great dependence on the deposition methods. The 1250 °C-sintered SP interlayer exhibits a porous microstructure. The EB method generates a thin and compact interlayer at a low substrate temperature of 250 °C. With the help of additional energetic argon and oxygen ions bombardment on the deposited species, the IAD method yields the densest GDC interlayer at the same substrate temperature, which leads to the best electrochemical performance of LSFC-based SOFC. 相似文献
3.
Thin-film solid oxide fuel cells (SOFCs) were fabricated with both Pt and mixed conducting oxide cathodes using sputtering, lithography, and etching. Each device consists of a 75–150 nm thick yttria-stabilized zirconia (YSZ) electrolyte, a 40–80 nm porous Pt anode, and a cathode of either 15–150 nm dense La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) or 130 nm porous Pt. Maximum powers produced by the cells are found to increase with temperature with activation energies of 0.94–1.09 eV. At 500 °C, power densities of 90 and 60 mW cm−2 are observed with Pt and LSCF cathodes, respectively, although in some conditions LSCF outperforms Pt. Several device types were fabricated to systematically investigate electrical properties of components of these fuel cells. Micro-fabricated YSZ structures contacted on opposite edges by Pt electrodes were used to study temperature-dependent in-plane conductivity of YSZ as a function of lateral size and top and bottom interfaces. Si/Si3N4/Pt and Si/Si3N4/Au capacitor structures are fabricated and found to explain certain features observed in impedance spectra of in-plane and fuel cell devices containing silicon nitride layers. The results are of relevance to micro-scale energy conversion devices for portable applications. 相似文献
4.
Hui Xiong 《Journal of power sources》2009,193(2):589-592
Dense ultra-thin nanocrystalline La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) films with thickness of ∼50 nm, have been sputtered on nanoporous anodic alumina-supported nanocrystalline thin film yttria-stabilized zirconia and patterned by photolithography into microelectrodes. This approach enables low-temperature (425-550 °C) electrochemical properties of dense ultra-thin nanocrystalline LSCF to be characterized. The results reveal that the electrochemical resistance of nanocrystalline ultra-thin LSCF is dominated by the oxygen surface exchange reaction at the electrode surface with an activation energy of 1.1 eV. Area-specific resistance of LSCF was obtained and the results are of potential relevance to utilizing nanostructured oxide cathodes for micro-SOFCs operated at low temperatures. 相似文献
5.
Pd promoted Sm0.5Sr0.5CoO3 (SSC)–La0.8Sr0.2Ga0.8Mg0.15Co0.05O3−δ (LSGMC5) composite cathodes for intermediate temperature solid oxide fuel cells (ITSOFC) were prepared using the wet impregnation method. XRD analyses demonstrated that the Pd in the electrode was in the form of PdO. The activity for oxygen reduction of the electrode increased with the increase in the concentration of Pd in the electrode and with the decrease in the electrode sintering temperature. The electrode containing 2.4 wt% Pd sintered at 1123 K showed an electrode resistance about 0.12 Ω cm2 at near equilibrium conditions in oxygen at 873 K, which was only about one fourth of the electrode resistance without Pd addition. The addition of Pd species in the electrode showed no obvious effect on the mechanism of the oxygen reduction reaction. 相似文献
6.
As candidates of cathode materials for single-chamber solid oxide fuel cells, La0.8Sr0.2MnO3 (LSM) and La0.8Sr0.2Sc0.1Mn0.9O3 (LSSM) were synthesized by a combined EDTA-citrate complexing sol-gel process. The solid precursors of LSM and LSSM were calcined at 1000 and 1150 °C, respectively, to obtain products with similar specific surface area. LSSM was found to have higher activity for methane oxidization than LSM due to LSSM's higher catalytic activity for oxygen reduction. Single cells with these two cathodes initialized by ex situ reduction had similar peak power densities of around 220 mW cm−2 at 825 °C. The cell using the LSM cathode showed higher open-circuit-voltage (OCV) at corresponding temperatures due to its reduced activity for methane oxidation relative to LSSM. A negligible effect of methane and CO2 on the cathode performance was observed for both LSM and LSSM via electrochemical impedance spectroscopy analysis. The high phase stability of LSSM under reducing atmosphere allows a more convenient in situ reduction for fuel cell initiation. The resultant cell with LSSM cathode delivered a peak power density of ∼200 mW cm−2 at 825 °C, comparable to that from ex situ reduction. 相似文献
7.
This work studies the electrochemical performance and stability of La0.8Sr0.2MnO3 (LSM) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathodes in a AISI441 interconnect/cathode/YSZ electrolyte half-cell configuration at 800 °C for 500 h. Ohmic resistance and polarization resistance of the cathodes are analyzed by deconvoluting the electrochemical impedance spectroscopy (EIS) results. The LSM cathode has much higher resistance than the LSCF electrode even though the respective cathode resistance either decreases or stays stable over the long term thermal treatment. During the 500 h thermal treatment, dramatic elemental distribution changes influence the electrochemical behaviors of the cathodes. Chromium diffusion from the interconnect into the LSM electrode at triple phase boundaries (TPBs) leads to segregation of Sr away from La and Mn. For the LSCF cathode, Sr and Co segregation is dominant. The fundamental processes at the TPBs are proposed. Overall, LSCF is a much preferred cathode material because of its much smaller resistance for the 500 h thermal treatment time. 相似文献
8.
Yu Chen Fanglin ChenWendong Wang Dong DingJianfeng Gao 《Journal of power sources》2011,196(11):4987-4991
Sm0.2(Ce1−xTix)0.8O1.9 (SCTx, x = 0-0.29) modified Ni-yttria-stabilized zirconia (YSZ) has been fabricated and evaluated as anode in solid oxide fuel cells for direct utilization of methane fuel. It has been found that both the amount of Ti-doping and the SCTx loading level in the anode have substantial effect on the electrochemical activity for methane oxidation. Optimal anode performance for methane oxidation has been obtained for Sm0.2(Ce0.83Ti0.17)0.8O1.9 (SCT0.17) modified Ni-YSZ anode with SCT0.17 loading of about 241 mg cm−2 resulted from four repeated impregnation cycles. When operating on humidified methane as fuel and ambient air as oxidant at 700 °C, single cells with the configuration of SCT0.17 modified Ni-YSZ anode, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-Sm0.2Ce0.8O1.9 (LSCF-SDC) composite cathode show the polarization cell resistance of 0.63 Ω cm2 under open circuit conditions and produce a peak power density of 383 mW cm−2. It has been revealed that the coated Ti-doped SDC on Ni-YSZ anode not only effectively prevents the methane fuel from directly impacting on the Ni particles, but also enhances the kinetics of methane oxidation due to an improved oxygen storage capacity (OSC) and redox equilibrium of the anode surface, resulting in significant enhancement of the SCTx modified Ni-YSZ anode for direct methane oxidation. 相似文献
9.
Perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF6428), a wonderful electronic–ionic conductor could be used as cathode of solid oxide fuel cell (SOFC). Graded cathode with coarse layer and fine layer, could improve the diffusion rate and electrochemical reaction activity of oxidant. The fabrication and properties of graded LSCF6428 cathode were discussed in this paper. First, pure perovskite LSCF6428 powders were prepared by citrate–EDTA method (CEM), citrate method (CM) and solid phase synthesis (SPS). The powders with higher specific surface area and smaller grain size are easier to be sintered and densified. Single LSCF6428 cathode with thickness of 30 μm was prepared by SPS powders, the porosity of cathode was high about 30% and pore size was about 5 μm. Graded LSCF6428 cathode including 30 μm outer layer and 10 μm inner layer was prepared by SPS and CM powders, respectively. Clear double-layer cathode was observed by SEM, which combined tightly and transited gradually. Porosity of outer layer is high about 30% and pore size is about 1–5 μm; inner layer is finer and pore size is about 0.2–1 μm. Based on the above research, 300 μm yttria stabilized zirconia (YSZ) electrolyte supported cell with single LSCF6428 cathode and double-layer LSCF6428 cathode were prepared, and the properties of two type cells were tested in H2. Power density of graded cell is 197 mW cm−2 at 950 °C, and improved about 46% comparing that of single layer LSCF6428 cell (135 mW cm−2). 相似文献
10.
Effect of Gd0.2Ce0.8O1.9 (GDC) infiltration on the performance and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes on Y2O3-stabilized ZrO2 (YSZ) electrolyte has been studied in detail under solid oxide electrolysis cell (SOEC) operating conditions at 800 °C. The incorporation of GDC nanoparticles significantly enhances the electrocatalytic activity for oxygen oxidation reaction on LSM electrodes. Electrode polarization resistance of pristine LSM electrode is 8.2 Ω cm2 at 800 °C and decreases to 0.39 and 0.09 Ω cm2 after the infiltration of 0.5 and 1.5 mg cm−2 GDC, respectively. The stability of LSM oxygen electrodes under the SOEC operating conditions is also significantly increased by the GDC infiltration. A 2.0 mg cm−2 GDC infiltrated LSM electrode shows an excellent stability under the anodic current passage at 500 mA cm−2 and 800 °C for 100 h. The infiltrated GDC nanoparticles effectively shift the reaction sites from the LSM electrode/YSZ electrolyte interface to the LSM grains/GDC nanoparticle interface in the bulk of the electrode, effectively mitigating the delamination at the LSM/YSZ interface. The results demonstrate that the GDC infiltration is an effective approach to enhance the structural integrity and thus to achieve the high activity and excellent stability of LSM-based oxygen electrode under the SOEC operating conditions. 相似文献
11.
Cu, Ag and Pt added La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and gadolinia-doped ceria (GDC) were analyzed by the temperature-programmed techniques for their characteristics as either the cathode or the anode of the solid oxide fuel cells (SOFCs). Temperature-programmed oxidation using CO2 was used to characterize the cathode materials while temperature-programmed reduction (TPR) using H2 and TPR using CO were used to characterize the anode materials. These techniques can offer an easy screening of the materials as the SOFC electrodes. The effects of adding Cu, Ag and Pt to LSCF for the cathodic reduction activity and the anodic oxidation activity are different—Cu > Ag > Pt for reduction and Pt > Cu > Ag for oxidation. The CO oxidation activities are higher than the H2 oxidation activities. Adding GDC to LSCF can increase both reduction and oxidation activities. The LSCF–GDC composite has a maximum activity for either reduction or oxidation when LSCF/GDC is 2 in weight. 相似文献
12.
Functional all-oxide thin film micro-solid oxide fuel cells (μSOFCs) that are free of platinum (Pt) are discussed in this report. The μSOFCs, with widths of 160 μm, consist of thin film La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as both the anode and cathode and Y0.08Zr0.92O1.96 (YSZ) as the electrolyte. Open circuit voltage and peak power density at 545 °C are 0.18 V and 210 μW cm−2, respectively. The LSCF anodes show good lattice and microstructure stability and do not form reaction products with YSZ. The all-oxide μSOFCs endure long-term stability testing at 500 °C for over 100 h, as manifested by stable membrane morphology and crack-free microstructure. 相似文献
13.
N. Ortiz-Vitoriano 《Journal of power sources》2009,192(1):63-69
Polycrystalline samples of La0.6Ca0.4Fe1−xNixO3 (x = 0.1, 0.2, 0.3) (LCFN) are prepared by liquid mix method. The structure of the polycrystalline powders is analyzed with X-ray powder diffraction data. The XRD patterns are indexed as the orthoferrite similar to that of LaFeO3 having a single phase with orthorhombic perovskite structure (Pnma). The morphological characterization is performed by scanning electron microscopy (SEM) obtaining a mean particle size less than 300 nm.Polarization resistance is studied using two different electrolytes: Y-stabilized zirconia (YSZ) and Sm-doped ceria (SDC). Electrochemical impedance spectroscopy (EIS) measurements of LCFN/YSZ/LCFN and LCFN/SDC/LCFN test cells are carried out. These electrochemical experiments are performed at equilibrium from 850 °C to room temperature, under both zero dc current intensity and air. The best value of area specific resistance (ASR) obtained is 0.88 Ω cm2, corresponding to the La0.6Ca0.4Fe0.9Ni0.1O3 material using SDC as electrolyte. The dc four-probe measurement indicates that La0.6Ca0.4Fe0.9Ni0.1O3 exhibits fairly high electrical conductivity, over 300 S cm−1 at T > 500 °C. 相似文献
14.
N. Ortiz-Vitoriano C. Bernuy-López A. Hauch I. Ruiz de Larramendi T. Rojo 《International Journal of Hydrogen Energy》2014
For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology, suitable materials and structures which enable operation at lower temperatures, while retaining high cell performance, must be developed. Recently, the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 oxide has shown potential as an intermediate temperature SOFC cathode. An equivalent circuit describing the cathode polarization resistances was constructed from analyzing impedance spectra recorded at different temperatures in oxygen. A competitive electrode polarization resistance is reported for this oxygen electrode using a Ce0.8Gd0.2O1.9 electrolyte, determined by impedance spectroscopy studies of symmetrical cells sintered at 800 °C and 1000 °C. Scanning electron microscopy (SEM) studies of the symmetrical cells revealed the absence of any reaction layer between cathode and electrolyte, and a porous electrode microstructure even when sintered at a temperature of only 800 °C. The performance of this cathode shows favorable oxygen reduction reaction (ORR) properties potentially making it an excellent choice for IT-SOFC application. 相似文献
15.
Zhan GaoRizwan Raza Bin ZhuZongqiang Mao Cheng WangZhixiang Liu 《International Journal of Hydrogen Energy》2011,36(6):3984-3988
Sm0.2Ce0.8O1.9 (SDC)/Na2CO3 nanocomposite synthesized by the co-precipitation process has been investigated for the potential electrolyte application in low-temperature solid oxide fuel cells (SOFCs). The conduction mechanism of the SDC/Na2CO3 nanocomposite has been studied. The performance of 20 mW cm−2 at 490 °C for fuel cell using Na2CO3 as electrolyte has been obtained and the proton conduction mechanism has been proposed. This communication demonstrates the feasibility of direct utilization of methanol in low-temperature SOFCs with the SDC/Na2CO3 nanocomposite electrolyte. A fairly high peak power density of 512 mW cm−2 at 550 °C for fuel cell fueled by methanol has been achieved. Thermodynamical equilibrium composition for the mixture of steam/methanol has been calculated, and no presence of C is predicted over the entire temperature range. The long-term stability test of open circuit voltage (OCV) indicates the SDC/Na2CO3 nanocomposite electrolyte can keep stable and no visual carbon deposition has been observed over the anode surface. 相似文献
16.
Daehee Lee Inyong Jung Seong Oh Lee Sang Hoon Hyun Jae Hyuk Jang Jooho Moon 《International Journal of Hydrogen Energy》2011,36(11):6875-6881
Sm0.5Sr0.5CoO3 (SSC)-Sm0.2Ce0.8O1.9 (SDC) core-shell composite cathodes are synthesized via a polymerizable complex method, and the durability of a cell incorporating the cathodes is examined. Nanocrystalline SSC powders have been coated onto the surfaces of SDC cores to enable the formation of a rigid backbone structure, over which the catalyst phase is effectively dispersed. A symmetrical SSC-SDC |SDC| SSC-SDC half-cell exhibits a polarization resistance of 0.098 Ω cm2 at 650 °C. The durability and microstructure of the cathode are investigated by electrochemical impedance spectroscopy and thermo-cycle tests at temperatures in the range of 100 °C-650 °C. After 30 cycles, the polarization resistance is found to increase by 9.04 × 10−2 Ω cm2, a 3.56% rise with respect to the initial resistance. Coarsening of the SSC catalyst phase has been prevented with the use of core-shell type powders, as confirmed by a nearly constant low frequency polarization resistance and a microstructural analysis. The performance of a unit cell comprised of the core-shell type cathode exhibits 1.07 W cm−2 at 600 °C and 0.62 W cm−2 at 550 °C. 相似文献
17.
In this paper, the structural and transport properties of selected La1−xSrxCo0.2Fe0.8O3 (LSCF) perovskites and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 (LSCFN64262) perovskite are presented. Crystal structure of the samples was characterized by means of X-ray studies with Rietveld method analysis. DC electrical conductivity and thermoelectric power were measured at a wide temperature range (80–1200 K) in air. For La0.2Sr0.8Co0.2Fe0.8O3 (LSCF2828) and La0.4Sr0.6Co0.2Fe0.8O3 (LSCF4628) perovskites a maximum observed on electrical conductivity dependence on temperature exists at about 750 K. It can be associated with an appearance of oxygen vacancies and implies a mixed ionic-electronic transport. A growing amount of oxygen vacancies at higher temperatures causes a decrease in the electrical conductivity due to a recombination mechanism associated with lowering of the average valence of 3d metals. A similar characteristic was found for LSCFN64262 perovskite, which also exhibits a relatively high electrical conductivity. 相似文献
18.
Microstructure and polarization of La0.8Sr0.2MnO3 cathode deposited by alcohol solution precursor plasma spraying 总被引:1,自引:0,他引:1
Xiao-Ming Wang Cheng-Xin Li Chang-Jiu Li Guan-Jun Yang 《International Journal of Hydrogen Energy》2012
Alcohol solution precursor plasma spraying (SPPS) was employed to prepare porous La0.8Sr0.2MnO3 (LSM) cathode for solid oxide fuel cells (SOFCs). The surface morphology and microstructure of the LSM deposits were characterized by SEM. The electrochemical behavior was investigated through the impedance spectroscopy. The effect of annealing treatment on alcohol SPPS LSM microstructure and cathode polarization was examined. The results show that when the alcohol was used as solvent, at a spray distance of 60 mm, the as-sprayed LSM deposits presented porous agglomerates with a size range from 10 to 60 μm which were mainly composed of small particles ranging from 0.2 to 2 μm. The LSM cathode showed a finely porous microstructure with grain sizes from micrometers to sub-micrometers, Annealing at 1050 °C for 2 h in air resulted in coherent porous films of the perovskite phase with a fine microstructure. The electrochemical impedance measurement yielded the cathode polarization of 1.04 and 0.15 Ω·cm2 for the ethanol SPPS LSM at 850 °C and 1000 °C, respectively. 相似文献
19.
LSCF powders with a specific surface area of 25.2 m2 g−1 and an average particle size of 89 nm are synthesized by the polymerizable complex method. The use of nanocrystalline LSCF powders allows the fabrication of an interlayer-free nanoporous cathode on top of an ScSZ electrolyte at a low temperature at which non-electrocatalytic secondary phases cannot form. The electrochemical performance of the interlayer-free cathode depends largely on the sintering temperature. A cathode sintered at below 750 °C lacks sufficient mechanical adhesion to the electrolyte, while the electrode surfaces are locally densified when sintered at above 800 °C. Impedance spectroscopy combined with microstructural evidence reveals that the optimum sintering temperature for LSCF is 750 °C. This avoids excess densification and grain growth, and results in the lowest polarization resistance (0.048 Ω cm2 at 750 °C). 相似文献
20.
Shouguo Huang 《International Journal of Hydrogen Energy》2011,36(17):10968-10974
LaNi0.6Fe0.4O3 (LNF), LNF-Sm0.2Ce0.8O1.9 (SDC), and LNF-SDC-Ag cathodes on SDC electrolytes were investigated at intermediate temperatures using AC impedance spectroscopy. Results show that adding 50 wt.% SDC into LNF yields a significant low area specific resistance (ASR) which was found to be 0.92 Ω cm2 at 700 °C. Infiltrating 0.3 mg/cm2 Ag into LNF-50 wt.% SDC can improve the electronic conductivity and oxygen exchange reaction activity, and thereby remarkably decrease the ASRs. The ASR value of the LNF-SDC-Ag cathode is as low as 0.18 Ω cm2 at 700 °C, and 0.46 Ω cm2 at 650 °C. The long-term test shows that the LNF-SDC-Ag cathode may be a promising candidate for solid oxide fuel cells operating at temperatures lower than 650 °C. 相似文献