首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations of alpha-lactalbumin were performed under conditions of neutral pH and low pH in order to study the acid-induced molten globule state. Through the use of experimental techniques such as NMR and CD spectroscopy, molten globules have been characterized as being compact intermediates with secondary structure similar to that of the native protein but with tertiary structure that is disordered. The detailed structure of the molten globule state is unknown, however. Through the use of computer simulations we can study the structural changes which occur upon lowering pH. The simulations presented here differ from previous unfolding simulations in two important ways: the electrostatic interactions are treated more accurately than ever before, and artificially high temperatures are not used to force the protein to unfold. Simulations of 880 psec each were run at pH 7 (control simulation) and pH 2. We concentrate on the interesting changes in the tertiary interactions within the protein with lowering of pH. In particular, there is a loss of native tertiary contacts in the beta domain and interdomain region, and a large decrease in interdomain hydrogen bonds.  相似文献   

2.
Papain exhibits the characteristics of molten globule under acidic conditions as seen by circular dichroism, fluorescence and ANS binding. Between pH 2.0-2.5 the protein exhibits substantial secondary structure as indicated by far-UV CD spectrum but loses the persistent tertiary interactions of the native state. Enhanced binding of ANS to the state at pH 2.0 in relation to the native and unfolded states at neutral pH indicates a considerable exposure of aromatic side chains. Temperature and guanidine hydrochloride induced unfolding of papain in this state is noncooperative and the transition curves are biphasic in nature. As papain molecule consists of two domains, the results suggest that the domains unfold independently and sequentially.  相似文献   

3.
The kinetics of the guanidine hydrochloride-induced unfolding and refolding of bovine beta-lactoglobulin, a predominantly beta-sheet protein in the native state, have been studied by stopped-flow circular dichroism and absorption measurements at pH 3.2 and 4.5 degrees C. The refolding reaction was a complex process composed of different kinetic phases, while the unfolding was a single-phase reaction. Most notably, a burst-phase intermediate of refolding, which was formed during the dead time of stopped-flow measurements (approximately 18 ms), showed more intense ellipticity signals in the peptide region below 240 nm than the native state, yielding overshoot behavior in the refolding curves. We have investigated the spectral properties and structural stability of the burst-phase intermediate and also the structural properties in the unfolded state in 4.0 M guanidine hydrochloride of the protein and its disulfide-cleaved derivative. The main conclusions are: (1) the more intense ellipticity of the intermediate in the peptide region arises from formation of non-native alpha-helical structure in the intermediate, apparently suggesting that the folding of beta-lactoglobulin is not represented by a simple sequential mechanism. (2) The burst-phase intermediate has, however, a number of properties in common with the folding intermediates or with the molten globule states of other globular proteins whose folding reactions are known to be represented by the sequential model. These properties include: the presence of the secondary structure without the specific tertiary structure; formation of a hydrophobic core; broad unfolding transition of the intermediate; and rapidity of formation of the intermediate. The burst-phase intermediate of beta-lactoglobulin is thus classified as the same species as the molten globule state. (3) The circular dichroism spectra of beta-lactoglobulin and its disulfide-cleaved derivative in 4.0 M guanidine hydrochloride suggests the presence of the residual beta-structure in the unfolded state and the stabilization of the beta-structure by disulfide bonds. Thus; if this residual beta-structure is part of the native beta-structure and forms a folding initiation site, the folding reaction of beta-lactoglobulin may not necessarily be inconsistent with the sequential model. The non-native alpha-helices in the burst-phase intermediate may be formed in an immature part of the protein molecule because of the local alpha-helical propensity in this part.  相似文献   

4.
The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of alpha-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.  相似文献   

5.
The unfolding reaction of the dimeric protein tubulin, isolated from goat brain, was studied using fluorescence and circular dichroism techniques. The unfolding of the tubulin dimer was found to be a two-step process at pH 7. The first step leads to the formation of an intermediate conformation, stable at around 1-2 M urea, followed by a second step that was due to unfolding of the intermediate state. At pH 3, the urea-induced biphasic unfolding profiles obtained at pH 7 became a one-step process indicating that a stable intermediate was also formed at this pH. The intermediate at pH 3 was more stable toward urea denaturation than that at pH 7. The intermediate state has about 60% secondary structure, partially exposed aromatic residues, and less tertiary structure as compared to the native states. Also, hydrophobic surfaces were more exposed in the intermediate than in the native or unfolded states. These results indicate that the intermediate state observed during tubulin unfolding is not only distinct from both the native and unfolded forms but also possesses some properties characteristic of a molten globule.  相似文献   

6.
The eukaryotic acidic ribosomal P proteins, contrary to the standard r-proteins which are rapidly degraded in the cytoplasm, are found forming a large cytoplasmic pool that exchanges with the ribosome-bound proteins during translation. The native structure of the P proteins in solution is therefore an essential determinant of the protein-protein interactions that take place in the exchange process. In this work, the structure of the ribosomal acidic protein YP2beta from Saccharomyces cerevisiae has been investigated by fluorescence spectroscopy, circular dichroism (CD), nuclear magnetic resonance (NMR), and sedimentation equilibrium techniques. We have established the fact that YP2beta bears a 22% alpha-helical secondary structure and a noncompact tertiary structure under physiological conditions (pH 7.0 and 25 degrees C); the hydrophobic core of the protein appears to be solvent-exposed, and very low cooperativity is observed for heat- or urea-induced denaturation. Moreover, the 1H-NMR spectra show a small signal dispersion, and virtually all the amide protons exchange with the solvent on a very short time scale, which is characteristic of an open structure. At low pH, YP2beta maintains its secondary structure content, but there is no evidence for tertiary structure. 2,2,2-Trifluoroethanol (TFE) induces a higher amount of alpha-helical structure but also disrupts any trace of the remaining tertiary fold. These results indicate that YP2beta may have a flexible structure in the cytoplasmic pool, with some of the characteristics of a "molten globule", and also point out the physiological relevance of such flexible protein states in processes other than protein folding.  相似文献   

7.
alpha-Lactalbumin, a small calcium-binding protein, forms an equilibrium molten globule state under a variety of conditions. A set of four peptides designed to probe the role of local interactions and the role of potential long-range interactions in stabilizing the molten globule of alpha-lactalbumin has been prepared. The first peptide consists of residues 20 through 36 of human alpha-lactalbumin and includes the entire B-helix. This peptide is unstructured in solution as judged by CD. The second peptide is derived from residues 101 through 120 and contains both the D and 310 helices. When this peptide is crosslinked via the native 28 to 111 disulfide to the B-helix peptide, a dramatic increase in helicity is observed. The crosslinked peptide is monomeric, as judged by analytical ultracentrifugation. The peptide binds 1-anilinonaphthalene-8-sulphonate (ANS) and the fluorescence emission maximum of the construct is consistent with partial solvent exposure of the tryptophan residues. The peptide corresponding to residues 101 to 120 adopts significant non-random structure in aqueous solution at low pH. Two hydrophobic clusters, one involving residues 101 through 104 and the other residues 115 through 119 have been identified and characterized by NMR. The hydrophobic cluster formed by residues 101 through 104 is still present in a smaller peptide containing only residues 101 to 111 of alpha-lactalbumin. The cluster also persists in 6 M urea. A non-native, pH-dependent interaction between the Y103 and H107 side-chains that was previously identified in the acid-denatured molten globule state was examined. This interaction was found to be more prevalent at low pH and may therefore be an example of a local interaction that stabilizes preferentially the acid-induced molten globule state.  相似文献   

8.
The folding of the small protein barstar, which is the intracellular inhibitor to barnase in Bacillus amyloliquefaciens, has been studied by equilibrium unfolding methods. Barstar is shown to exist in two conformations: the A form, which exists at pH values lower than 4, and the N state, which exists at pH values above 5. The transition between the A form and the N state is completely reversible. UV absorbance spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the two conformations. The mean residue ellipticity measured at 220 nm of the A form is 60% that of the N state, and the A form has some of the properties expected for a molten globule conformation. Fluorescence energy transfer experiments using 1-anilino-8-naphthalenesulfonate indicate that at least one of the three tryptophan residues in the A form is accessible to water. Surprisingly, high concentrations of denaturant are required to unfold the A form. For denaturation by guanidine hydrochloride, the midpoint of the cooperative unfolding transition measured by circular dichroism for the A form at pH 3 is 3.7 +/- 0.1 M, which is significantly higher than the value of 2.0 +/- 0.1 M observed for the N state at pH 7. The unfolding of the A form by guanidine hydrochloride or urea is complex and cannot be satisfactorily fit to a two-state (A<==>U) model for unfolding. Fluorescence-monitored tertiary structure melts before circular dichroism-monitored secondary structure, and an equilibrium unfolding intermediate must be present on the unfolding pathway of A.  相似文献   

9.
The chaperone-like alpha-crystallin prevents aggregation of several proteins by interacting with their non-native states. Alpha-Lactalbumin adopts different non-native states under different experimental conditions. We have investigated the interaction of alpha-crystallin with three non-identical non-native states, using fluorescence, circular dichroism, and gel filtration chromatography. The compact molten globule state of apo-alpha-lactalbumin in tris buffer does not interact with alpha-crystallin. The expanded, flexible molten globule-like state of reduced apo-alpha-lactalbumin (formed at pH 7.2) also does not interact with alpha-crystallin. Only the aggregation-prone non-native state of reduced apo-alpha-lactalbumin formed at pH 6.0 interacts with alpha-crystallin to form a stable complex. The alpha-crystallin bound reduced apo-alpha-lactalbumin exhibits properties similar to those of a molten globule. Our results show that alpha-crystallin interacts only with the aggregation prone molten globule state of reduced apo-alpha-lactalbumin but not with the other non-aggregating molten globule states of the protein.  相似文献   

10.
Acetylcholinesterase from Torpedo californica partially unfolds to a state with the physicochemical characteristics of a "molten globule" upon mild thermal denaturation or upon chemical modification of a single non-conserved buried cysteine residue, Cys231. The protein in this state binds tightly to liposomes. It is here shown that the rate of unfolding is greatly enhanced in the presence of unilamellar vesicles of dimyristoylphosphatidylcholine, with concomitant incorporation of the protein into the lipid bilayer. Arrhenius plots reveal that in the presence of the liposomes the energy barrier for transition from the native to the molten globule state is lowered from 145 to 47 kcal/mol. Chemical modification of Cys231 by mercuric chloride produces initially a quasinative state of Torpedo acetylcholinesterase which, at room temperature, undergoes spontaneous transition to a molten globule state with a half-life of 1-2 hr. This permitted temporal resolution of interaction of the quasi-native state with the membrane from the transition of the membrane-bound protein to the molten globule state. The data presented here suggest that either the native enzyme, or a quasi-native state with which it is in equilibrium, interacts with the liposome, which then promotes a fast transition to the membrane-bound molten globule state by lowering the energy barrier for the transition. These findings raise the possibility that the membrane itself, by lowering the energy barrier for transition to a partially unfolded state, may play an active posttranslational role in insertion and translocation of proteins in situ.  相似文献   

11.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

12.
For echidna and canine milk lysozymes, which were presumed to be the calcium-binding lysozymes by their amino acid sequences, we have quantitated their calcium-binding strength and examined their guanidine unfolding profiles. The calcium-binding constants of echidna and canine lysozymes were determined to be 8.6 x 10(6) M(-1) and 8.9 x 10(6) M(-1) in 0.1 M KCl at pH 7.1 and 20 C, respectively. The unfolding of decalcified canine lysozyme proceeds in the same manner as that of alpha-lactalbumin, through a stable molten globule intermediate. However, neither calcium-bound nor decalcified echidna lysozyme shows a stable molten globule intermediate. This unfolding profile of echidna lysozyme is identical to that of conventional lysozymes and pigeon egg-white lysozyme, avian calcium-binding lysozyme. This result supports the suggestion of Prager and Jolles (Prager EM, Jolles P. 1996. Animal lysozymes c and g: An overview. In: Jolles P, ed. Lysozymes: Model enzymes in biochemistry and biology. Basel-Boston-Berlin: Birkhauzer Verlag. pp 9-31) that the lineage of avian and echidna calcium-binding lysozymes and that of eutherian calcium-binding lysozymes diverged separately from that of conventional lysozymes.  相似文献   

13.
The urea-induced equilibrium unfolding of ovine placental lactogen, purified from ovine placenta, was followed by size-exclusion chromatography, far-UV CD, and intrinsic tryptophan fluorescence. The data obtained by each of these methods showed a poor fit to a two-state model involving only a native and an unfolded form. A satisfactory fit required, instead, a model that involved a stable, partially folded form in addition to the native and unfolded ones. The results obtained from the best-fitting theoretical curves for the three-state model indicated that this intermediate state, which is the predominant species in solution at 3.6 M of urea activity, is compact, largely alpha-helical, and changes considerably the native-like tertiary packing around its tryptophan residues. These findings suggest that this stable intermediate exhibits properties similar to those that characterize the molten globule state.  相似文献   

14.
The volume change for the transition from the native state of horse heart apomyoglobin to a pressure-induced intermediate with fluorescence properties similar to those of the well-established molten globule or I form was measured to be -70 ml/mol. Complete unfolding of the protein by pressure at pH 4.2 revealed an upper limit for the unfolding of the intermediate of -61 ml/mol. At 0.3 M guanidine hydrochloride, the entire transition from native to molten globule to unfolded state was observed in the available pressure range below 2.5 kbar. The volume change for the N-->I transition is relatively large and does not correlate well with the changes in relative hydration for these transitions derived from measurements of the changes in heat capacity, consistent with the previously observed lack of correlation between the m-value for denaturant-induced transitions and the measured volume change of unfolding for cooperativity mutants of staphylococcal nuclease (Frye et al. 1996. Biochemistry. 35:10234-10239). Our results support the hypothesis that the volume change associated with the hydration of protein surface upon unfolding may involve both positive and negative underlying contributions that effectively cancel, and that the measured volume changes for protein structural transitions arise from another source, perhaps the elimination of void volume due to packing defects in the structured chains.  相似文献   

15.
The acid-induced unfolding of the pH 4 intermediate of apomyoglobin (I) is described by either of two models: (1) a Monod-Wyman-Changeux-based model (MWC) where salt bridges perturb the pKa values of specific ionizable side chains, causing unfolding of I as these salt bridges are broken at low pH, and (2) the Linderstrom-Lang smeared charge model (L-L), which attributes acid unfolding of I to charge repulsion caused by the accumulation of positive charge on the surface of the protein. Both models fit earlier acid unfolding data well, but they make differing predictions about the effects of electrostatic mutants, which have been made and tested. Deletions of positive charge within I are found to stabilize I, but disruptions of potential salt bridges have little effect. These results show that the acid unfolding of I (I<-->U) is largely caused by generalized charge effects rather than by the loss of specific salt bridges. Acid unfolding of the native form, which is caused largely by a single histidine with a severely depressed pKa, is a sensitive indicator of changes in stability produced by mutations. In contrast, the I <--> U transition is caused by a number of groups with smaller pKa perturbations and both models predict that the pH midpoint of the I right harpoon over left harpoon U transition is an insensitive indicator of stability. This result reconciles previous conflicting results, in urea and acid unfolding studies of hydrophobic contact mutants, by showing that changes in the stability of I are poorly detected by acid unfolding.  相似文献   

16.
Expression of cytochrome c from Thermus thermophilus in Escherichia coli (E. coli) leads to a protein with characteristics of a molten globule. Unfolding induced by guanidine hydrochloride (GdHCl) shows that E. coli-expressed cytochrome c has lower stability (and less cooperativity of unfolding) compared to the protein extracted from Thermus thermophilus, even though the two proteins have identical amino-acid sequences. Moreover, Soret and far-UV circular dichroism signals differ for the two proteins, suggesting a distorted heme environment and more side-chain dynamics of E. coli-expressed cytochrome c. Still, tryptophan fluorescence in E. coli-expressed cytochrome c is quenched as in native protein, and the iron coordinates in a low-spin form. Amino-acid sequencing indicates the presence of only one covalent cysteine-linkage to the heme in E. coli-expressed cytochrome c (normally, there are two linkages), a possible explanation for the trapped, molten-globule-like structure. The features of this non-native protein may be of interest for interpretation of cytochrome c folding kinetics in vitro, since a molten globule may be an intermediate on the folding pathway.  相似文献   

17.
The native tropomyosin molecule is a parallel, registered, alpha-helical coiled coil made from two 284-residue chains. Long excised subsequences (> or = 95 residues) form the same structure with comparable thermal stability. Here, we investigate local stability using shorter subsequences (20-50 residues) that are chemically synthesized or excised from various regions along the protein chain. Thermal unfolding studies of such shorter peptides by CD in the same solvent medium used in extant studies of the parent protein indicate very low helix content, almost no coiled-coil formation, and high thermal lability of such secondary structure as does form. This behavior is in stark contrast to extant data on leucine-zipper peptides and short "designed" synthetic peptides, many of which have high alpha-helix content and form highly stable coiled coils. The existence of short coiled coils calls into question the older idea that short subsequences of a protein have little structure. The present study supports the older view, at least in its application to tropomyosin. The intrinsic local alpha-helical propensity and helix-helix interaction in this prototypical alpha-helical protein is sufficiently weak as to require not only dimerization, but macro-molecular amplification in order to attain its native conformation in common benign media near neutral pH.  相似文献   

18.
Proteins denature at low pH because of intramolecular electrostatic repulsions. The addition of salt partially overcomes this repulsion for some proteins, yielding a collapsed conformation called the A-state. A-states have characteristics expected for the molten globule, a notional kinetic protein folding intermediate. Here we show that the addition of neutral sugars to solutions of acid-denatured equine ferricytochrome c induces formation of the A-state in the absence of added salt. We characterized the structure and stability of the sugar-induced A-state with circular dichroism spectropolarimetry (CD) and NMR-monitored hydrogen-deuterium exchange experiments. We also examined the stability of the sugar-induced A-state as a function of sugar size and concentration. The results are interpreted using several models and we conclude that the stabilizing effect is consistent with increased steric repulsion between the protein and the sugar solutions.  相似文献   

19.
On the pH dependence of protein stability   总被引:2,自引:0,他引:2  
This paper treats the free energy contribution of ionizable groups to protein stability. A method is presented for the calculation of the pH dependence of the denaturation free energy of a protein, which yields results that can be compared directly to experiment. The first step in the treatment is the determination of the average charges of all the ionizable groups in both the folded and unfolded protein. An expression due to Tanford then relates the pH dependence of the unfolding free energy to the difference in net charge between the two states. In order to determine absolute rather than relative unfolding free energies, it is necessary to calculate the total contribution of ionizable groups to protein stability at some reference pH. This is accomplished through a statistical mechanical treatment similar to the one used previously in the calculation of pKas. The treatment itself is rigorous but it suffers from uncertainties in the pKa calculations. Nevertheless, the overall shape of experimentally observed plots of denaturation free energy as a function of pH are reasonably well reproduced by the calculations. A number of general conclusions that arise from the analysis are: (1) knowledge of titration curves and/or effective pKa values of ionizable groups in proteins is sufficient to calculate the pH dependence of the denaturation free energy with respect to some reference pH value. However, in order to calculate the absolute contribution of ionizable groups to protein stability, it is necessary to also know the intrinsic pKa of each group. This is defined as the pKa of a group in a hypothetical state of the protein where all other groups are neutral. (2) Due to desolvation effects, ionizable groups destabilize proteins, although the effect is strongly dependent on pH. There are however, strongly stabilizing pairwise Coulombic interactions on the surface of proteins. (3) Plots of stability versus pH should not be interpreted in terms of a group whose pKa corresponds to the titration midpoint, but rather to a group with different pKas (that correspond approximately to the titration end points) in each state. (4) Any residual structure in the GuHCl-denatured state of proteins appears to have little effect on the pH dependence of stability. (5) pH-dependent unfolding, for example to the "molten globule" state, appears due to individual groups with anomalous pKas whose locations on the protein surface may determine the nature of the unfolded state.  相似文献   

20.
A central question in biological chemistry is the minimal structural requirement of a protein that would determine its specificity and activity, the underlying basis being the importance of the entire structural element of a protein with regards to its activity vis à vis the overall integrity and stability of the protein. Although there are many reports on the characterization of protein folding/unfolding intermediates, with considerable secondary structural elements but substantial loss of tertiary structure, none of them have been reported to show any activity toward their respective ligands. This may be a result of the conditions under which such intermediates have been isolated or due to the importance of specific structural elements for the activity. In this paper we report such an intermediate in the unfolding of peanut agglutinin that seems to retain, to a considerable degree, its carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and the quaternary association in legume lectins in particular, where precise subunit topology is required for their biologic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号