首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
Recovery of phosphate as struvite (MgNH4PO4.6H2O), before it forms and accumulates on wastewater treatment equipment, solves wastewater treatment problems and also provides environmentally sustainable, renewable nutrient source for the agriculture sector. A pilot-scale fluidized bed reactor was used to recover phosphate through crystallization of struvite, from anaerobic digester centrate at the Lulu Island Wastewater Treatment Plant, Richmond, British Columbia, Canada. The desired degree of phosphate removal was achieved by maintaining operating pH (8.0-8.2), and recycle ratio 5-9, to control the supersaturation conditions inside the reactor. The performance of the system was found to be optimal when in-reactor supersaturation ratio was 2-6. Among several other operating parameters, apparent upflow velocity and magnesium to phosphate molar ratio were also found important to maintain system performance, both in terms of efficiency of phosphate removal and recovery as struvite pellets. A narrow window of upflow velocity (400-410 cm/min) was found to be effective in removing 75-85% phosphate. TOC level inside the rector was found to affect the performance to some extent. The precipitation potential of struvite could be successfully predicted using a thermodynamic solubility product value of 10(-13.36) and its temperature dependence in PHREEQC.  相似文献   

2.
The Woodman Point Wastewater Treatment Plant (WWTP) in Western Australia has experienced two separate problems causing avoidable maintenance costs: the build-up of massive struvite (MgNH4PO4. 6H2O) scaling downstream of the anaerobic digester and the formation of hydrogen sulfide (H2S) levels in the digester gas to levels that compromised gas engine operation and caused high operating costs on the gas scrubber. As both problems hang together with a chemical imbalance in the anaerobic digester, we decided to investigate whether both problems could be (feasibly and economically) addressed by a common solution (such as dosing of iron solutions to precipitate both sulfide and phosphate), or by using separate approaches. Laboratory results showed that, the hydrogen sulfide emission in digesters could be effectively and economically controlled by the addition of iron dosing. Slightly higher than the theoretical value of 1.5 mol of FeCl3 was required to precipitate 1 mol of dissolved sulfide inside the digester. Due to the high concentration of PO4(3-) in the digested sludge liquor, significantly higher iron is required for struvite precipitation. Iron dosing did not appear an economic solution for struvite control via iron phosphate formation. By taking advantage of the natural tendency of struvite formation in the digester liquid, it is possible to reduce the risk of struvite precipitation in and around the sludge-dewatering centrifuge by increasing the pH to precipitate struvite out before passing through the centrifuge. However, as the Mg2+/PO4(3-) molar ratio in digested sludge was low, by increasing the pH alone (using NaOH) the precipitation of PO4(3-) was limited by the amount of cations (Ca2+ and Mg2+) available in the sludge. Although this would reduce struvite precipitation in the centrifuge, it could not significantly reduce PO4(3-) recycling back to the plant. For long-term operation, maximum PO4(3-) reduction should be the ultimate aim to minimise PO4(3-) accumulation in the plant. Magnesium hydroxide liquid (MHL) was found to be the most cost-effective chemical to achieve this goal. It enhanced struvite precipitation from both, digested sludge and centrate to the point where more than 95% PO4(3-) reduction in the digested sludge was achieved.  相似文献   

3.
A three-phase (aqueous/gas/solid) mixed weak acid/base chemistry kinetic model is applied to evaluate the processes operative in the aeration treatment of swine wastewater (SWW) and sewage sludge anaerobic digester liquor (ADL). In both applications, with a single set of constants (except for the aeration rates which are situation specific), close correlation could be obtained between predicted and measured data, except for the Ca concentration-time profile in the SWW. For this wastewater, the model application highlighted an inconsistency in the measured Ca data which could not be resolved; this illustrates the value of a mass balance-based model in evaluating experimental data. From the model applications, in both wastewaters the dominant minerals precipitating are struvite and amorphous calcium phosphate (ACP), which precipitate simultaneously competing for the same species, P. The absolute and relative masses of the two precipitants are governed by the initial solution state (e.g. total inorganic C (C(T)), Mg, Ca and P concentrations), their relative precipitation rates (struvite > ACP) and the system conditions imposed (aeration rates and time applied). It is concluded that the kinetic model is able to predict correctly the time-dependent weak acid/base chemistry reactions and final equilibrium state for situations where multiple minerals competing for the same species precipitate simultaneously or sequentially, a deficiency in traditional equilibrium chemistry-based algebraic models.  相似文献   

4.
Precipitation of ammonium together with phosphate and magnesium is a possible alternative for lowering the nitrogen content of wastewater. In this study we examine the removal of ammonium nitrogen and phosphorus from slurry-type swine wastewater containing high concentrations of nutrients by the addition of phosphoric acid along with either calcium oxide or magnesium oxide, which leads to the crystallization of insoluble salts such as hydroxyapatite and struvite. The struvite crystallization method showed a high capacity for the removal of nitrogen when magnesium oxide and phosphoric acid were used as the magnesium and phosphate sources, respectively. When it was applied to swine wastewater containing a high concentration of nitrogen, the injection molar ratio of Mg2+:NH4+:PO4(3-) that gave maximum ammonium nitrogen removal was 3.0:1.0:1.5.  相似文献   

5.
This paper reports the results of laboratory studies on the removal of ammonium from aqueous solutions using struvite pyrogenation residues. A series of experiments were conducted to examine the effects of the pyrogenation temperature (90-210 °C) and time (0.5-4 h) on the ammonium release of struvite. In addition, the pyrolysate of struvite produced at different pyrogenation temperatures and times was recycled for ammonium removal from aqueous solutions. The experimental results indicated that the ammonium release ratio of struvite increased with an increase in the pyrogenation temperature and time, and the struvite pyrolysate used as magnesium and phosphate source for ammonium removal was produced at the optimal condition of pyrogenation temperature of 150 °C for 1 h. Furthermore, experimental results showed that the optimum pH and pyrolysate dosage for ammonium removal from 100 ml synthetic wastewater (1,350 mg ammonium/L) were at pH 9 and 2.4 g of struvite pyrolysate, respectively, and initial ammonium concentration played a significant role in the ammonium removal by the struvite pyrolysate. In order to further reduce the cost of struvite precipitation, the struvite pyrolysate was repeatedly used for four cycles. The results of economic analysis showed that recycling struvite for three process cycles should be reasonable for ammonium removal, with ammonium removal efficiencies of over 50% and a reduction of 40% in the removal cost per kg NH(4)(+).  相似文献   

6.
The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(?) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(?) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.  相似文献   

7.
Recovering nitrogen and phosphorus through struvite (MgNH4PO4 6H2O) crystallization from swine wastewater has gained increasing interest. However, swine wastewater contains complex compositions, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. In this work, experiments were carried out to evaluate struvite precipitation in the anaerobically digested swine wastewater, with dosing bittern as a low-cost magnesium source. Exceeded 90% phosphate removal and 23-29% ammonium reduction were obtained. FTIR, XRD and mass balance analysis were combined to analyze the species of precipitated minerals. Results showed that the precipitates were struvite, mixed with amorphous calcium phosphate (ACP) and brucite. The presence of Ca2+ diminished the percentage of struvite and gave rise to ACP formation. Controlling pH below 9.5 and bittern dosage above 1% (w/w) could inhibit ACP precipitation and harvest a highly pure struvite crystal product.  相似文献   

8.
Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.  相似文献   

9.
This research is concerned with the removal of ammonia nitrogen and phosphorus in foodwaste by crystallization. Reductions have been achieved by struvite formation after the addition of magnesium ions (Mg2+). Magnesium ions used in this study were from magnesium salts of MgCl2. The results of our analysis using scanning electron microscopy and energy dispersive X-ray analysis showed that the amount of struvite in precipitated sludge grew enough to be seen with the naked eye (600-700 microm). EDX analysis also showed that the main components of the struvite were magnesium and phosphorus. NH3-N removal efficiency using MgCl2 was 67% while PO4-P removal efficiency was 73%. It was confirmed that nitrogen and phosphorus could be stabilized and removal simultaneously through anaerobic digestion by Mg, NH3 and PO4-P, which were necessary for struvite formation.  相似文献   

10.
Microbial effects on phosphorus release were studied for the sediments of Tianjin source water by controlling DO and pH. The results show that: (1) In sterilised water, phosphorus began to release when pH = 9.1 and the stable release rate was 9.51 mg/(d.m2). It indicates that microorganisms may utilise anaerobic iron respiration to release Fe-P. (2) With unsterilised water, phosphorus release rate is 2.14 mg/(d.m2) when pH = 6.5, 8.60 mg/(d.m2) when pH is uncontrolled, and gets to 8.51 mg/(d.m2) when pH = 9.1. This indicates that microorganisms can dissolve insoluble phosphates to accelerate the ion exchange of OH(-) and PO4(3-), which are derived from iron-bound ortho-P and aluminium-bound ortho-P.  相似文献   

11.
Interest in phosphorus recovery from urine diverted from faeces has been growing recently. Phosphorus in urine can be precipitated out as struvite (MgNH4PO4 x 6H2O) with addition of magnesium salt under alkaline conditions. Struvite formation, however, should be more well understood for its practical application. We predicted the struvite formation with a development of a new equilibrium model. The model considered the formation of eight different kinds of precipitates, including struvite, with effects of ionic strength and temperature. In addition, experiments on struvite formation in urine were conducted for the model validation. The model prediction of struvite formation had good agreement with the experimental results. The optimum pH to form struvite was predicted to be 9.4-9.7. In order to precipitate 99% of phosphate in urine with 1.5 fold Mg concentration to PO4-P, the pH value was necessary to be more than 8.1 based on the model prediction.  相似文献   

12.
Phosphate removal and recovery can be combined in BNR processes. This may be realised by struvite precipitation from the supernatant of the sludge in anaerobic compartments. This can be beneficial for either improving bio-P removal effluent quality or lowering the influent COD/P ratio required for bio-P removal. For this reason, a patented BNR process, BCFS, was developed and applied in The Netherlands. Several questions relating to P-recovery and behaviour of the system remain unclear and need to be ascertained. For this purpose, a modelling technique was employed in this study. With the help of a previous developed model describing carbon oxidation and nutrient removal, three cases were fully simulated. The simulations demonstrated that there was an optimal stripping flow rate and P-recovery would increase in costs and bio-P activity might be negatively affected due to decreased bio-P efficiency if this value was exceeded. The simulations indicated that the minimal COD(biod)/P ratio required for the effluent standard (1 g P/m3) could be lowered from 20 to 10 with 36% of P-recovery. A simulation with dynamic inflow revealed that the dynamic influent loads affected slightly the anaerobic supernatant phosphate concentration but the effluent phosphate concentration would not be affected with regular P-recovery.  相似文献   

13.
This paper reports on the effects of inorganic acids (sulphuric acid, hydrochloric acid, nitric acid) and organic acids (citric acid, oxalic acids) for phosphorus recovery from sludge and struvite precipitation results. It was observed that both inorganic acid and organic acids were effective at phosphorus release. The studies on precipitation of released phosphorus from sludge as magnesium ammonium phosphate (struvite) were also done using nitric and oxalic acids. Phosphorus and heavy metals of leachate were analyzed before and after precipitation. It was observed that heavy metal concentrations in the extracted samples decrease after precipitation. Precipitation was accomplished by using extract derived with nitric acid; however, in oxalic acid applications, it was not achieved. When the chemical constituents of the dried material were examined oxygen, sodium and nitrogen were found to be the major elements.  相似文献   

14.
A major fraction of nutrients emitted from households are originally present in only 1% of total wastewater volume. New sanitation concepts enable the recovery and reuse of these nutrients from feces and urine. Two possible sanitation concepts are presented, with varying degree of source separation leading to various recovery products. Separate vacuum collection and transport followed by anaerobic treatment of concentrated black water (BW) demonstrated on a scale of 32 houses preserve 7.6 g/N/p/d and 0.63 gP/p/d amounting to respectively 69 and 48% of the theoretically produced N and P in the household, and 95% of the retained P was shown to be recoverable via struvite precipitation. Reuse of the anaerobic sludge in agriculture can substantially increase the P recovery. Energy recovery in the form of biogas from anaerobic digestion of concentrated BW, fits well in new concepts of sustainable, zero energy buildings. Nutrient recovery from separately collected urine lowers the percentage of nutrient recovery in comparison with BW but can, on the other hand, often be implemented in existing sanitation concepts. Theoretically 11gN/p/d and 1.0 g P/p/d are produced with urine, of which 38-63 and 34-61% were recovered in practice on a scale of 8-160 inhabitants in Sweden. New sanitation concepts with resource recovery and reuse are being demonstrated worldwide and more and more experience is being gained.  相似文献   

15.
Total dissolved gas (TDG) supersaturation in the upper Yangtze River caused by high spill rates upstream of hydroelectric dams has become a serious environmental problem in recent years. TDG supersaturation downstream of the Xiangjiaba Dam was investigated during flood periods in 2014 and 2015. Alongside this, an in situ study was conducted to evaluate the impacts of TDG supersaturation on grass carp (Ctenopharyngodon idellus) and rock carp (Procypris rabaudi). TDG supersaturation levels ranged from 115% to 131% in 2014 and from 118% to 128% in 2015. During 2014, TDG supersaturation first decreased and then increased and finally remained relatively stable. In contrast, the TDG supersaturation level remained between 122–126% for a relatively long time in the 2015 study period. During 2014, grass carp confined to water depths of 0–1 and 1–2 m began to die after 45 hr of exposure, and most grass carp died between 90 and 130 hr when TDG supersaturation level was greater than 127%. The first observed death during 2015 occurred after 30‐hr exposure. The survival of rock carp was greater than 50% when they were restricted to water depths of 0–1 m. Only three rock carp died when they were confined to water depths of 0–2 m, and no dead fish were recorded at water depths of 0–3 m.  相似文献   

16.
The feasibility of two accumulation-systems (AC) for anaerobic digestion and storage of concentrated black water with (AC1) or without (AC2) urine + kitchen organic-wastes was investigated. The waste(water) was collected by two vacuum toilet/transport systems. The influent-total COD of the AC2 (53,000 mg/L) was more concentrated by four times than that of the AC1. The suspended COD represented the major part (71-73%) of influent total COD of the two systems. The batch-experiments results showed a high anaerobic biodegradability of the waste(water) (> 85%). The AC systems demonstrated stable performance. There was no inhibition effect of NH4 and VFA concentration decreased in time. Total COD removal of 58% was achieved in both systems, after 105 days at 20 degrees C. Moreover, if only the supernatant in AC1 is withdrawn and the settled sludge stays for the next runs, only 20% of the influent total COD will be in the supernatant. In AC2, 74% of influent ortho-P was removed by precipitation. Therefore, the settled sludge in the AC2 had a high total-P concentration of 1,300 mg/L. The C:N:P ratios of the supernatant and the sludge were 26:13:1 and 35:4.5:1, respectively, in the AC1, and were 28:14:1 and 32:2.4:1, respectively, in AC2.  相似文献   

17.
污水处理厂回流液中回收磷酸铵镁的试验研究   总被引:1,自引:0,他引:1  
邹安华  孙体昌  宋存义  邢奕 《给水排水》2006,32(Z1):115-118
用污水处理厂回流液进行磷酸铵镁(MAP)沉淀试验,研究化学沉淀法回收MAP的适宜条件.结果表明,pH为8~11时生成沉淀的主要成分为MAP;当pH为10,药剂配比n(NH+4)∶n(Mg2+)∶n(PO43-)控制在1∶1∶1和1∶1.4∶1时得到的晶体纯度高,前者形成的沉淀量为5.3 g/L,氨氮去除率为90.86%;后者形成的沉淀量为5.74 g/L,氨氮去除率为95.84%.分析表明从回流液中回收MAP可以大幅降低处理成本以及系统的氮磷负荷,还可解决MAP结垢问题,实现资源的再生.  相似文献   

18.
Phosphorus recovery as struvite from eutropic waters by XDA-7 resin   总被引:1,自引:0,他引:1  
Li H  Ye Z  Lin Y  Wang F 《Water science and technology》2012,65(12):2091-2097
Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.  相似文献   

19.
Increased population growth and food prices have resulted in more demand for fertilizers, especially phosphorus (P), to be used in agriculture and production of food crops. Phosphorus is one of the important natural resources and will be exhausted in the near future. Nowadays, struvite production is a good method to recover P from urine. However, the natural urines contain high amounts of micro-organic pollutants which may cause health risks. Therefore, in this contribution, we investigated the amount of micro-organic pollutants in struvite from urine. There are various kinds of pharmaceuticals and hormones which are used in the world. Nevertheless, we focused on 10 pharmaceuticals (amoxycillin, carbamazepine, erythromycin, furosemide, atenolol, ibuprofen, norfloxacin, trimethoprim, tetracycline, and acetylsalicylic acid) and one hormone (17β-estradiol) as representatives. The experiments were carried out with synthetic and natural urines. After the production of struvite, the results from synthetic and natural urine samples showed that only tetracycline, erythromycin, and norfloxacin remained in the struvite, and, especially, tetracycline remained in struvite with quite a high amount.  相似文献   

20.
Human urine is a source of nutrients and has a significant potential for recycle of nitrogen. Recently, much research focused on separate collection and treatment of human urine. Recovery of nutrients from human urine requires hydrolysis of urea into ammonia and subsequent removal of ammonia and sometimes phosphorus. This study attempted to evaluate urea hydrolysis of human urine in both untreated fresh samples and urease added urine samples. Recovery of nutrients by struvite precipitation on pre-hydrolysed samples was also assessed on undiluted and 1:1 diluted samples. Results of urea hydrolysis on untreated urine samples indicated that the process was slow and pH exerted a significant effect on the process. No hydrolysis occurred above pH 10. From pH 2 to 7.5, 25% of urea could be hydrolysed in 30 d. Urease added hydrolysis with the enzyme doses 25-49 mg L(-1) was a rapid process providing complete conversion into ammonia in 1.5 h. Struvite precipitation conducted on enzyme hydrolysed urine sample proved to be an efficient process and ammonia removals up to 95% were obtained. Struvite precipitation also provided 50% organic nitrogen removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号