首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous indoor mobile optical wireless systems operated typically at 30 Mbit/s to 100 Mbit/s and here we report on systems that operate at 2.5 Gbit/s and 5 Gbit/s. We are able to achieve these improvements through the introduction of three new approaches: transmit beam power adaptation, a two dimensional beam clustering method (2DBCM), and diversity imaging. Through channel and noise modeling we evaluated the performance of our systems. The performance of a novel optical wireless (OW) configuration that employs a two dimensional adaptive beam clustering method (2DABCM) in conjunction with imaging diversity receivers is evaluated under multipath dispersion and background noise (BN) impairments. The new proposed system (2DABCM transmitter with imaging diversity receiver) can help reduce the effect of intersymbol interference and improve the signal-to-noise ratio (SNR) even at high bit rate. At a bit rate of 30 Mbit/s, previous work has shown that imaging conventional diffuse systems (CDS) with maximal ratio combining (MRC) offer 22 dB better SNR than the non-imaging CDS. Our results indicate that the 2DABCM system with an imaging diversity receiver provides an SNR improvement of 45 dB over the imaging CDS with MRC when both operate at 30 Mbit/s. In the CDS system, an increase in bandwidth from 38 MHz (non-imaging CDS) to 200 MHz approximately, is achieved when an imaging receiver is implemented. Furthermore, the three new methods introduced increase the bandwidth from 38 MHz to 5.56 GHz. At the least successful receiver locations, our 2.5 Gbit/s and 5 Gbit/s imaging 2DABCM systems with MRC offer significant SNR improvements, almost 26 dB and 19 dB respectively over the non-imaging CDS that operates at 30 Mbit/s.  相似文献   

2.
Three methods (transmit power adaptation, imaging reception, and Multicarrier Code Division Multiple Access (MCCDMA)) are introduced to the optical wireless (OW) system and a significant improvement is achieved in the presence of very directive noise, multipath propagation, mobility, and shadowing typical in a real indoor environment. In the absence of shadowing, replacing a single non-imaging receiver by an imaging receiver with maximal ratio combining (MRC) improves the signal-tonoise ratio (SNR) by 20 dB in a conventional diffuse system (CDS) operating at 30 Mbit/s at a transmitter-receiver separation of 6m in agreement with previous results in the field. Further SNR improvement of 24 dB is achieved when a line strip multi-beam system (LSMS) replaces the CDS when both systems employ an imaging MRC receiver. Furthermore, our new adaptive LSMS (ALSMS) system coupled with the imaging MRC receiver offers an SNR improvement of 23 dB over the imaging MRC LSMS illustrating the gain achieved through adaptation. The results also show that combining transmit power adaptation with spotdiffusing (i.e. ALSMS) coupled with an imaging receiver based on select best (SB) increases the bandwidth from 46.5 MHz (nonimaging CDS) to 7.53 GHz thus enabling the OW system to achieve higher data rates and provide multi-user capabilities in our case by employing a MC-CDMA scheme. In a 10 user MC-CDMA OW system, a bit error rate (BER) improvement from 4.9 × 10?1 to 2.1 × 10?5 is achieved when the imaging MRC ALSMS system replaces the imaging CDS in a shadowed environment.  相似文献   

3.
In this letter, we propose and evaluate a novel optical wireless configuration that employs a multibeam transmitter in conjunction with a narrow field-of-view direction diversity receiver. Such a configuration overcomes the drawbacks and combines the advantages of both types of optical wireless links, including line-of-sight and diffuse transmission. A multibeam transmitter placed on the communication floor was adopted to produce multiple diffusing spots on the middle of the ceiling in the form of a line strip. The design goal is to reduce the effect of intersymbol interference and to improve the signal-to-noise ratio (SNR) when the system operates under the constraints of background noise and multipath dispersion. Simulation results show that our line strip multibeam transmitter (LSMT) with only three branches diversity gives about 23 dB SNR improvement over the conventional system. The results also show that the multipath dispersion, which induces pulse spread, is significantly reduced when the LSMT with diversity detection is used.  相似文献   

4.
We discuss two modifications to the design of wireless infrared links that can yield significant performance improvements, albeit at the price of increased complexity. In line-of-sight and non-line-of-sight links, replacement of a single-element receiver by one employing an imaging light concentrator and a segmented photodetector can reduce received ambient light noise and multipath distortion. For a fixed receiver entrance area, such an imaging receiver can reduce transmit power requirements by as much as about 14 dB, depending on the link design and the number of photodetector segments. Imaging receivers also reduce co-channel interference, and may therefore enable infrared wireless networks to employ space-division multiplexing, wherein several transmitters located in close proximity can transmit simultaneously at the same wavelength. In nondirected non-line-of-sight links, replacement of the diffuse transmitter by one that projects multiple narrow beams can reduce the path loss, further reducing the transmit power requirement by several decibels. We describe the design of an experimental 100 Mb/s infrared wireless link employing a multibeam transmitter and a 37-pixel imaging receiver  相似文献   

5.
We study the performance of L-branch equal-gain combining (EGC) and maximal-ratio combining (MRC) receivers operating over nonidentical Weibull-fading channels. Closed-form expressions are derived for the moments of the signal-to-noise ratio (SNR) at the output of the combiner and significant performance criteria, for both independent and correlative fading, such as average output SNR, amount of fading and spectral efficiency at the low power regime, are studied. We also evaluate the outage and the average symbol error probability (ASEP) for several coherent and noncoherent modulation schemes, using a closed-form expression for the moment-generating function (mgf) of the output SNR for MRC receivers and the Pade/spl acute/ approximation to the mgf for EGC receivers. The ASEP of dual-branch EGC and MRC receivers is also obtained in correlative fading. The proposed mathematical analysis is complimented by various numerical results, which point out the effects of fading severity and correlation on the overall system performance. Computer simulations are also performed to verify the validity and the accuracy of the proposed theoretical approach.  相似文献   

6.
This paper presents a new Transmitted Reference (TR) Ultra-WideBand (UWB) receiver based on Spatial Diversity (SD), which employs Multi-Antenna Technology (MAT) to improve the performance of TR-UWB receiver. According to the amplitude of correlator output of every antenna branch, this paper analyzed the performances of the proposed TR-UWB receiver employing three different kinds of combina-tion strategies, i.e., Maximum Ratio Combination (MRC), Equal Gain Combination (EGC), and Selective Combination (SC), which are different from conventional ones, and theoretically proved that the performance of EGC is better than MRC. Simulation results verify that when EGC is adopted and BER=10–3, increasing three antennas provides Signal to Noise Ratio (SNR) gain of about 3 dB in CM4 channel and SNR gain of about 2 dB in CM2 channel.  相似文献   

7.
We evaluate transmission link performance for a Multi-Spot Diffusing Configuration (MSDC) for indoor wireless optical LANs. MSDC utilizes a multibeam transmitter and a composite receiver consisting of 7 narrow field-of-view (FOV) branches. Numerical evaluation is performed for two values of the receiver FOV corresponding to the cases when at least one or two diffusing spots are covered by a branch. Required optical power is used as a measure for MSDC link evaluation. The composite receiver provides angle diversity, which allows implementation of effective combining techniques. Selection Combining (SC) and Maximal Ratio Containing (MRC) methods have been analyzed. Our simulation results show that MSDC can reach much higher bit rates than a diffuse link can, without any channel equalization. MSDC link employing angle diversity receiver with larger FOV (each receiver branch capturing at least two diffusing spots) and using MRC method shows a promising performance for up to several hundreds of Mbps. System robustness against shadowing and blockage is also investigated. MSDC is more robust when an obstacle is located near the receiver, while this may cause severe problems in a diffuse link.  相似文献   

8.
In order to combine the advantages and to overcome the drawbacks of a direct line-of-sight or a diffuse configuration for wireless infrared access, a multispot diffusing concept utilizing a holographic spot array generator is presented. Simulation results are presented and compared with those for a pure diffuse configuration in terms of link characteristics, when a single-element or a multibranch composite receiver is employed. The multispot transmitter ensures a more uniform signal power distribution. Improvements of about 2 dBo (optical decibels) can be achieved compared to a Lambertian pattern illumination. The increased power path loss at the edges of the communication cell is accompanied with a decrease in the delay spread resulting in an extension of the coverage range. Utilization of angle diversity detection improves the signal-to-noise ratio by more than 7 dB when selecting the best receiver branch and more than 10.5 dB in the case of maximal-ratio combining. Use of a multibeam transmitter and an angle diversity receiver reduces the likelihood of shadowing of the receiver due to an obstacle standing along the path between the receiver and the transmitter  相似文献   

9.
We analyze the improvements obtained in wireless infrared (IR) communication links when one replaces traditional single-element receivers by imaging receivers and diffuse transmitters by multibeam (quasi-diffuse) transmitters. This paper addresses both line-of-sight (LOS) and nonline-of-sight (non-LOS) IR links. We quantify link performance in terms of the transmitter power required to achieve a bit error rate (BER) not exceeding 10-9 with 95% probability. Our results indicate that in LOS links, imaging receivers can reduce the required transmitter power by up to 13 dB compared to single-element receivers. In non-LOS links, imaging receivers and multibeam transmitters can reduce the required transmitter power by more than 20 dB. Furthermore we discuss the use of multibeam transmitters and imaging receivers to implement space-division multiple access (SDMA). In a representative example with two users transmitting at a power sufficient to achieve a BER not exceeding 10-9 with 95% probability in the absence of cochannel interference, when SDMA is employed, the system can achieve a BER not exceeding 10-9 with a probability of about 88%  相似文献   

10.
We present an optimum diversity receiver called blind ratio combining (BRC) that minimizes the average symbol error probability or maximizes the average output SNR, where the channels' time delays and the random phases are known, while the fading amplitudes are unknown. In contrast to previous works, where efforts were made to find a posteriori probabilities at the receiver, the BRC simply calculates the optimum weights, which depend on the channel's statistics, avoiding continuous channel estimation, and thus, it significantly reduces the system's complexity. In nonidentical multipath fading channels with power delay profile (PDP), the BRC receiver performs between maximal ratio combining (MRC) and equal gain combining (EGC), and keeps its performance comparable - and in some cases superior - to that of generalized selection combining, while for large values of the decay factor, it approaches MRC. Moreover, in the important practical case of exponential PDP - common in RAKE receivers modeling and adopted for the Universal Mobile Telecommunications System spatial channel modeling by the European Telecommunications Standards Institute-3GPP - the optimum weights can be accurately approximated by simple elementary functions. Furthermore, it is proved that the utilization of these weights ensures an error performance improvement over EGC for arbitrary PDPs. The proposed BRC receiver can be efficiently applied in wireless wideband communication systems, where a large number of diversity branches exists, due to the strong multipath effects.  相似文献   

11.
In order to improve the performance of indoor optical wireless communication links, two multispot diffusing geometries based on diamond and line strip spot distribution geometries are proposed, analysed and compared to the known uniform spot distribution. Such geometries combine the advantages of the diffuse and the line‐of‐sight systems, giving great robustness and ease of use. The novel line strip multibeam transmitter geometry has resulted in a receiver signal‐to‐noise ratio (SNR) improvement of about 4 dB compared to the conventional diffuse system as well as a significant reduction in the pulse spread. Simulation and comparison results for both the conventional diffuse system and the three multispot diffusing geometries are presented. Further, pulse responses, SNR, and delay spread results at various locations are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Adaptive turbo-coded modulation for flat-fading channels   总被引:1,自引:0,他引:1  
We consider a turbo-coded system employed on a flat-fading channel where the transmitter and receiver adapt the encoder, decoder, modulation scheme, and transmit power to the state of the channel. Assuming instantaneous and error-free channel gain and phase knowledge at the transmitter and the receiver, we determine the optimal adaptation strategy that maximizes the throughput of this system, while achieving a given bit-error rate under an average power constraint. Our optimized adaptive modulation strategy is based on an extensive set of existing turbo-coded modulation schemes. We find that adapting both the turbo encoder (rate) and the transmit power can achieve performance within 3 dB of the fading channel capacity.  相似文献   

13.
In this paper, the optimum decision boundaries for (N, M) differential amplitude phase-shift keying on the Rayleigh-fading channel are analyzed. A postdetection maximal ratio combining (MRC) and weighted maximal ratio combining (WMRC) diversity receivers are proposed. In the Rayleigh-fading channel, assuming a high signal-to-noise ratio and a small normalized Doppler frequency, the analytical optimum decision boundaries are obtained. In addition, it is shown that an outer optimum decision boundary is the inverse of the inner optimum decision boundary. In the proposed MRC receiver, the decision at each branch is made based on the minimum distance criterion. The performance of the MRC receiver is analyzed, in terms of the union bound for bit error probability. The proposed WMRC receiver assigns weighting factors to the decision variable at each branch, based on the optimum decision boundaries. The performance of the WMRC is investigated through computer simulation and compared with those of MRC and equal gain combining (EGC). From the results, the performances of MRC and WMRC are found to be better than those of the EGC receiver on both the Rayleigh- and Rician-fading channels. It is also found that the performance improvement of WMRC over MRC is more pronounced as the number of diversity branches increases  相似文献   

14.
廉宇轩  冯伟  丁青峰  朱一帆  孙建东  秦华  程凯 《红外与激光工程》2021,50(5):20210202-1-20210202-8
利用天线耦合AlGaN/GaN HEMT太赫兹探测器的自混频和外差混频效应,分别设计并测试了340 GHz频段直接检波式和外差混频式接收机前端。通过接收机信噪比的测量和接收功率的定标,得到了两种接收机的等效噪声功率。直接检波模式下探测器的响应度约为20 mA/W,直接检波模式和外差混频模式下接收机的等效噪声功率分别约为?64.6 dBm/Hz1/2和?114.79 dBm/Hz。在相同的载波功率和接收信号带宽条件下,当本振太赫兹波功率大于?7 dBm时,外差混频接收的信噪比优于直接检波的信噪比。当本振功率大于0 dBm时,外差混频接收机表现出优良的解调特性,其信噪比高出直接检波接收机的信噪比10 dB以上。  相似文献   

15.
Performance analysis of predetection EGC receiver in Weibull fading channel   总被引:2,自引:0,他引:2  
The predetection equal gain combining (EGC) receiver is generally known to have a performance that is close to the maximal ratio combining (MRC) receiver while having relatively less implementation complexity. The bit error rate (BER) of an EGC receiver for binary, coherent and noncoherent modulations has been analysed for an independent Weibull fading channel. Numerical results have been compared with the available results for selection combining (SC) and MRC diversity receivers.  相似文献   

16.
Limited feedback-based block diagonalization for the MIMO broadcast channel   总被引:3,自引:0,他引:3  
Block diagonalization is a linear preceding technique for the multiple antenna broadcast (downlink) channel that involves transmission of multiple data streams to each receiver such that no multi-user interference is experienced at any of the receivers. This low-complexity scheme operates only a few dB away from capacity but requires very accurate channel knowledge at the transmitter. We consider a limited feedback system where each receiver knows its channel perfectly, but the transmitter is only provided with a finite number of channel feedback bits from each receiver. Using a random quantization argument, we quantify the throughput loss due to imperfect channel knowledge as a function of the feedback level. The quality of channel knowledge must improve proportional to the SNR in order to prevent interference-limitations, and we show that scaling the number of feedback bits linearly with the system SNR is sufficient to maintain a bounded rate loss. Finally, we compare our quantization strategy to an analog feedback scheme and show the superiority of quantized feedback.  相似文献   

17.
In this paper, we present a comprehensive performance analysis of multiple-input multiple-output (MIMO) systems with transmit antenna selection (TAS) and stochastic power allocation (SPA) for the spatially correlated fading channels. Two best transmit antennas that maximize the instantaneous received signal-to-noise (SNR) are selected to transmit the Alamouti scheme and maximal-ratio combining (MRC) is applied at the receiver. With correlation matrices available to the transmitter, SPA is applied on these selected antennas. Two different methods are given to derive the explicit upper bounds on the bit-error rate (BER) performance. Finally we present numerical results to verify our analysis. It is shown that the TAS/SPA scheme can achieve high performance in spatially correlated channels.  相似文献   

18.
Antenna combining for the MIMO downlink channel   总被引:4,自引:0,他引:4  
A multiple antenna downlink channel where limited channel feedback is available to the transmitter is considered. In a vector downlink channel (single antenna at each receiver), the transmit antenna array can be used to transmit separate data streams to multiple receivers only if the transmitter has very accurate channel knowledge, i.e., if there is high-rate channel feedback from each receiver. In this work it is shown that channel feedback requirements can be significantly reduced if each receiver has a small number of antennas and appropriately combines its antenna outputs. A combining method that minimizes channel quantization error at each receiver, and thereby minimizes multi-user interference, is proposed and analyzed. This technique is shown to outperform traditional techniques such as maximum-ratio combining because minimization of interference power is more critical than maximization of signal power in the multiple antenna downlink. Analysis is provided to quantify the feedback savings, and the technique is seen to work well with user selection and is also robust to receiver estimation error.  相似文献   

19.
MIMO Broadcast Channels With Finite-Rate Feedback   总被引:8,自引:0,他引:8  
Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The well-known zero-forcing transmission technique is considered, and simple expressions for the throughput degradation due to finite-rate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the signal-to-noise ratio (SNR) (in decibels) in order to achieve the full multiplexing gain. This is in sharp contrast to point-to-point multiple-input multiple-output (MIMO) systems, in which it is not necessary to increase the feedback rate as a function of the SNR  相似文献   

20.
Uplink communication in a cellular radio network is considered where the base station in each cell employs linear or nonlinear (decision feedback) multiuser receivers. For any such receiver, the problem of interest is that of minimizing the total transmit power under the constraint that all the users of the network achieve their quality-of-service objective in terms of signal-to-interference ratio (SIR). When the solution is feasible for the desired SIR requirements, the optimum powers are computed with a distributed iterative power control strategy suitable for implementation at each base station. While the deterministic algorithm requires both in-cell and out-of-cell user information, the stochastic algorithm proposed in this paper can be implemented at the base stations in a truly distributed manner requiring knowledge of only in-cell parameters. Such an algorithm was proposed previously for the case where base stations use linear (single user) matched filter (MF) receivers. However, the feasibility region in terms of attainable SIRs for a well-designed multiuser receiver, particularly for a nonlinear receiver that employs decision feedback, is generally much larger than it is for the linear MF receiver. The stochastic power control algorithm in this paper, for linear or nonlinear multiuser receivers, converges in the mean-square sense to the minimal powers when the target SIRs are feasible. The second major focus of this paper is to improve the convergence properties of the conventional stochastic approximation based power control strategy by using the more recent results on averaging. Convergence issues of both the "nonaveraged" and "averaged" algorithms are investigated, and numerical examples are presented to demonstrate the performance improvement due to averaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号