首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted that wild type (growth suppressing) p53 is capable of binding to a consensus DNA sequence and is in a conformation recognizable by antibody PAb246 (for murine p53), but not by antibody PAb240. Conversely, mutant forms of p53 incapable of DNA binding often assume conformations that display the PAb240, but not the PAb246 epitope. Exposure of these two epitopes on p53 is therefore believed to be mutually exclusive. We show that wild type p53 translated in vitro in rabbit reticulocyte lysate (RRL) has a PAb240 epitope that is not always cryptic, even on p53 that is bound sequence-specifically to DNA (presumably as a tetramer). All of the DNA-bound, PAb240+ p53 concurrently displays the PAb246 epitope, and both epitopes can be occupied by antibody while p53 is bound to DNA. This novel 'dual positive' conformation also exists in the absence of DNA and suggests that p53 is not necessarily inactive when the PAb240 epitope is displayed. When the C-terminal 58 amino acids of p53 containing the dimer/tetramerization domains are replaced with a heterologous dimerization domain, the resultant dimeric p53 manifests only the PAb246+/PAb240- conformation while bound to DNA. Thus, the C-terminal 58 amino acids of p53 are required for the PAb246+/PAb240+ phenotype, possibly due to tetramerization. This novel 'dual positive' p53 conformation exists in an excess of wild type p53 that has the PAb246-/PAb240+ 'mutant' conformation, suggesting that the 'mutant' conformation is not dominant negative in and of itself.  相似文献   

2.
Previous studies from our laboratory, using p53 transgenic mice, have suggested that ultraviolet (UV) light-induced keratinocyte apoptosis in the skin is not affected by overexpression of mutant p53 protein. To further elucidate a possible role for p53 in UV-induced keratinocyte cell death, we now examine apoptosis in skin and isolated keratinocytes from p53 null (-/-) mice and assess the influence of cell differentiation on this process. In vivo, using this knockout model, epidermal keratinocytes in p53-/- mice exhibited only a 5.2-fold increase in apoptosis after 2000 J/m2 UVB irradiation compared with a 26.3-fold increase in normal control animals. If this p53-dependent apoptosis is important in elimination of precancerous, UV-damaged keratinocytes, then it should be active in the undifferentiated cells of the epidermal basal layer. To test this hypothesis, we examined the effect of differentiation on UV-induced apoptosis in primary cultures of murine and human keratinocytes. Apoptosis was p53-independent in undifferentiated murine keratinocytes, which exhibited relative resistance to UVB-induced killing with only a 1.5-fold increase in apoptosis in p53+/+ cells and a 1.4-fold increase in p53-/- cells. Differentiated keratinocytes, in contrast, showed a 9.4-fold UVB induction of apoptosis in p53+/+ cells, almost three times the induction observed in p53-/- cells. This UV-induced difference in apoptosis was observed when keratinocytes were cultured on type IV collagen substrate, but not on plastic alone. Western blotting of UV-irradiated, differentiated keratinocytes did not support a role for either Bax or Bcl-2 in this process. In support of these findings in mice, cell death in human cultured keratinocytes also occurred in a differentiation-associated fashion. We conclude that p53-induced apoptosis eliminates damaged keratinocytes in the differentiated cell compartment, but this mechanism is not active in the basal, undifferentiated cells and is therefore of questionable significance in protection against skin cancer induction.  相似文献   

3.
4.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5 degreesC). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5 degreesC, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5 degreesC that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32 degreesC). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

5.
PURPOSE: Kaposi's sarcoma (KS) is a proliferative process of suspected viral aetiology associated with immune deficiency. In transplanted patients, lesions regress on discontinuation of immunosuppressive therapy. The purpose of this work was to analyse the expression of the p53 oncosuppressor gene product, a proliferation regulator overexpressed in both malignant and non-malignant conditions, with the aim of better qualifying KS proliferation characteristics. METHODS: We analysed p53 expression in a group of transplanted, cyclosporin A-treated, KS patients by immunohistochemistry, utilizing the DO-7 (with and without the antigen retrieval pretreatment), and the PAb 240 monoclonal anti-p53 antibodies, the latter of which is able to detect a mutated epitope, and evaluating staining intensity and localization, whether cytoplasmic or nuclear. RESULTS: Seventy five percent of KS lesions from transplanted patients presented both nuclear and cytoplasmic positive p53 immunostaining with DO-7 antibody, thus demonstrating a presumably functional inactivation; one case also presented immunoreactivity with the PAb 240 antibody. CONCLUSIONS: On the basis of the results obtained and in the presence of lesion regression upon immunosuppression withdrawal, it may be concluded that KS in transplanted patients can be considered a non-malignant proliferative process, and that the cytoplasmic expression of p53 may stand for a functional inactivation pattern.  相似文献   

6.
The expression of the tumor suppressor/oncoprotein p53 has been investigated in normal human placental villous trophoblast, in vitro propagated invasive extravillous trophoblast, SV40 tumor antigen (Tag)-immortalized extravillous trophoblast, human cytomegalovirus (hCMV)-infected syncytiotrophoblast and malignant trophoblast (choriocarcinoma) cell lines (JAR, JEG-3 and BeWo) using quantitative enzyme-linked immunosorbent assay (ELISA) and Western immunoblot methods using monoclonal antibodies specific for wild-type and mutant p53. The normal villous and extravillous trophoblast cells expressed low levels of the wild-type p53 protein, whereas normal terminally differentiated multinucleated syncytiotrophoblast cells, as well as hCMV-infected syncytiotrophoblast, showed a higher expression of the wild-type p53 protein. SV40 Tag-immortalized invasive trophoblast cells also showed a high expression of the wild-type p53 protein which remained complexed with the Tag protein. All the choriocarcinoma cell lines over expressed the mutant form of the p53 protein. The increased expression of p53 protein in the SV40 Tag-immortalized invasive trophoblast and choriocarcinoma cells paralleled with increased expression of the mouse double minute 2 (mdm2) oncogenic protein. Transforming growth factor (TGF)-beta inhibited proliferation of normal extravillous trophoblast cells. The antiproliferative effects of TGF-beta were reduced in SV40 Tag-immortalized cells and non-detectable in choriocarcinoma cell lines JAR, BeWo and JEG-3. The inactivation of p53 owing to complexing with Tag in the immortalized premalignant trophoblast and p53 mutation in the malignant trophoblast may be responsible for their aberrant proliferation and refractoriness to antiproliferative effects of TGF-beta observed in these cells as compared to the normal trophoblast. These results may suggest the role of p53 protein in trophoblast differentiation, transformation and tumorigenesis.  相似文献   

7.
The p53 mutant, 143ala, was translated in vitro in either rabbit reticulocyte lysate (RRL) or wheat germ extract (WGE). In RRL, p53-143ala protein of both mutant and wild-type conformation, as detected immunologically with conformation-specific antibodies, was translated. The chaperone protein HSP90, present in RRL, was found to coprecipitate only with the mutated conformation of p53. Geldanamycin, shown previously to bind to HSP90 and destabilize its association with other proteins, decreased the amount of immunologically detectable mutated p53 and increased the amount of detectable wild-type protein, without affecting the total translation of p53. When translated in WGE, known to contain functionally deficient HSP90, p53-143ala produced p53 protein, which was not recognized by a mutated conformation-specific antibody. In contrast, the synthesis of conformationally detectable wild-type p53 in this system was not compromised. Reconstitution of HSP90 function in WGE permitted synthesis of conformationally detectable mutated p53, and this was abrogated by geldanamycin. Finally, when p53-143ala was stably tansfected into yeast engineered to be defective for HSP90 function, conformational recognition of mutated p53 was impaired. When stable transfectants of p53-143ala were prepared in yeast expressing wild-type HSP90, conformational recognition of mutated p53 was antagonized by macbecin I, a geldanamycin analog also known to bind HSP90. Taken together, these data demonstrate a role for HSP90 in the achievement and/or stabilization of the mutated conformation of p53-143ala. Furthermore, we show that the mutated conformation of p53 can be pharmacologically antagonized by drugs targeting HSP90.  相似文献   

8.
We have used gene disruption to isolate two talin (-/-) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of beta1 integrin, although levels of alpha5 and alphaV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (-/-) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (-/-) ES cells were able to assemble talin-containing focal adhesions. Both talin (-/-) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (-/-) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the beta1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for beta1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.  相似文献   

9.
10.
p53 activity is essential for normal development in Xenopus   总被引:1,自引:0,他引:1  
BACKGROUND: The tumor suppressor p53 plays a key role in regulating the cell cycle and apoptosis in differentiated cells. Mutant mice lacking functional p53 develop normally but die from multiple neoplasms shortly after birth. There have been hints that p53 is involved in morphogenesis, but given the relatively normal development of p53 null mice, the significance of these data has been difficult to evaluate. To examine the role of p53 in vertebrate development, we have determined the results of blocking its activity in embryos of the frog Xenopus laevis. RESULTS: Two different methods have been used to block p53 protein activity in developing Xenopus embryos--ectopic expression of dominant-negative forms of human p53 and ectopic expression of the p53 negative regulator, Xenopus dm-2. In both instances, inhibition of p53 activity blocked the ability of Xenopus early blastomeres to undergo differentiation and resulted in the formation of large cellular masses reminiscent of tumors. The ability of mutant p53 to induce such developmental tumors was suppressed by co-injection with wild-type human or wild-type Xenopus p53. Cells expressing mutant p53 activated zygotic gene expression and underwent the mid-blastula transition normally. Such cells continued to divide at approximately normal rates but did not form normal embryonic tissues and never underwent terminal differentiation, remaining as large, yolk-filled cell masses that were often associated with the neural tube or epidermis. CONCLUSIONS: In Xenopus, the maternal stockpile of p53 mRNA and protein seems to be essential for normal development. Inhibiting p53 function results in an early block to differentiation. Although it is possible that mutant human p53 proteins have a dominant gain-of-function or neomorphic activity in Xenopus, and that this is responsible for the development of tumors, most of the evidence indicates that this is not the case. Whatever the basis of the block to differentiation, these results indicate that Xenopus embryos are a sensitive system in which to explore the role of p53 in normal development and in developmental tumors.  相似文献   

11.
12.
13.
The mutant p53 gene was transfected into ACHN, a wild-type p53-containing human renal cell carcinoma (RCC) cell line. The colony forming efficiency in soft agar in the mutant-type p53-transfected cell line (ACHN/MP) was significantly higher than that in the vector-only transfected control cell line (ACHN/C). The anti-Fas monoclonal antibody (CH11) induced apoptosis in the ACHN/C cells in a dose-dependent manner, whereas the effect of CH11 on the ACHN/ MP cells was markedly suppressed. In addition, the cytotoxic effect of CH11 on the ACHN/MP cells was augmented by the pretreatment with interferon- , but the corresponding effect on ACHN/C cells was not. These findings suggest that Fas-mediated therapy could be a novel approach to RCC, if interferon- treatment is added according to the p53 gene status.  相似文献   

14.
Metastatic melanomas are often resistant to chemotherapy. To study whether the p53 mutational status affects chemosensitivity, we compared the responses to chemotherapy of four melanoma cell lines containing the wild-type p53 and four cell lines carrying the mutant p53. Cisplatin, at 10 microM, virtually killed all the cells in the wild-type p53 cell lines, while 57-95% of the cells in the mutant p53 cell lines survived (P = 0.005). After treatment with 100 nM of vincristine, on average 18% of the wild-type p53 melanoma cells survived compared with 55% of the mutant p53 cells (P = 0.04). After treatment with 40 nM, 200 nM or 1 microM of camptothecin the survival rates were, on average, 16%, 8% and 4% for the wild-type p53 melanoma cells, compared with 89%, 67% and 38% for the mutant p53 cells, respectively (P = 0.00004, P = 0.003 and P = 0.04, respectively). The anticancer agents were not toxic to normal melanocytes at doses inducing cytotoxicity in wild-type p53 melanoma cells. The main mechanism of cytotoxicity appears to be drug-induced apoptosis. Cisplatin, camptothecin and vincristine all induced apoptosis in wild-type p53 melanoma cells, but not in mutant p53 cells. Our results suggest that chemotherapy-induced apoptosis in melanoma cells is p53 dependent, and mutation of the p53 gene is an indicator of drug resistance in melanoma.  相似文献   

15.
We examined the expression of p53 in three lines of pluripotent embryonal carcinoma (EC) and ES cells. p53 mRNA and protein levels were constitutively high in two lines but absent from one. In the P19 line of EC cells neither p53 protein nor mRNA was detected. The first intron of the p53 gene in these cells had been invaded by a murine leukemia virus and there was extensive hypermethylation of the p53 gene accompanying its inactivation. In all three cell lines, irradiation resulted in arrest of the cells in the G2 but not in the G1 phase of the cell cycle despite the induction of p21cip1 in the cell lines expressing p53. Thus, the chromosomal stability of EC and ES cells appears to be not dependent on the p53 protein and we interpret our results to suggest that these cells may require the deletion of p53 dependent cell cycle regulation in order to become immortalized.  相似文献   

16.
We have evaluated the role of p53 in the induction of cell death by the DNA topoisomerase II inhibitor etoposide in M1 myeloid leukemia cells. Three different clones of M1 cells were used: S6, which lacks p53; Phe-132, which expresses mutant p53 constitutively; and LTR-13, which expresses mutant protein at 37 degrees C and wild-type p53 at 32 degrees C. As described previously, LTR-13 cells undergo rapid apoptosis upon induction of wild-type p53 at 32 degrees C. Multiparameter flow cytometric analysis showed that etoposide treatment (0.5 microg/ml) of all three cell lines at 37 degrees C is associated with a block in the G2 phase of the cell cycle, whereas the cells preferentially die out of the next S phase. Induction of wild-type p53 in LTR-13 cells is associated with a loss of cells in late S and G2-M phase, and the cells die out of the early S phase. Interestingly, the simultaneous induction of apoptosis by both pathways (wild-type p53 and etoposide) leads to suppression of the etoposide-induced G2 block. To determine the effect of p53 on the G2 to M transition, LTR-13 cells were incubated with etoposide for 24 h at 37 degrees C and then either maintained for an additional 12 h at 37 degrees C or shifted to 32 degrees C to activate wild-type p53. The expression of wild-type p53 resulted in an increase in mitosis-specific phosphorylation, as determined by the MPM-2 antibody as well as the formation of mitotic spindles. This was associated with an important augmentation of the cytotoxic effect of etoposide. In contrast, a similar temperature shift of Phe-132 cells, which express mutant p53, had no effect on either immunostaining with MPM-2 or the cytotoxicity. Taken together, our results indicate that wild-type p53 can override the etoposide-induced G2 block in at least some cell types. These data propose a new role for p53 in the cell death induced by chemotherapeutic agents and may have important implications for gene therapy.  相似文献   

17.
OBJECTIVE: Familial adenomatous polyposis coli (FAP) is an autosomal dominant disease characterized by an early onset of numerous adenomatous polyps of the colon and a high risk of colon carcinoma. The role of the p53 gene in the multistage process of FAP is as yet poorly defined. In the present study, a large family with evidence of polyposis and colon cancer was screened for the mutations of the p53 gene and protein overexpression. METHODS: We examined p53 protein expression from individuals with immunohistochemical techniques using monoclonal antibody PAb1801. Polymerase chain reaction products of exons 4-9 of the p53 were examined from individuals by single strand, conformational polymorphism analysis. RESULTS: We could find no evidence of overexpression and mutations of the p53 in any lesion including adenomas and carcinomas. CONCLUSION: We found that p53 gene alterations do not contribute to the genesis of adenoma or carcinoma of FAP patients for this large family examined.  相似文献   

18.
19.
Dexamethasone (DEX)-mediated inhibition of drug-induced, but not CD95 ligand-induced, apoptosis in malignant glioma cells correlates with wild-type p53 status. Here, we examined mechanisms underlying DEX-mediated protection from apoptosis. DEX did not induce p53 expression in two p53 wild-type cell lines (U87MG, LN-229) and did not alter drug-induced p53 accumulation. Forced expression of temperature-sensitive p53val135 in mutant conformation failed to prevent accumulation of endogenous wild-type p53 but acted in a transdominant negative manner to inhibit p53-mediated, camptothecin-induced p21WAF1/CIP1 expression. p53val135-transfected cells retained responsiveness to DEX at restrictive temperature, suggesting that p53 activity is not required for cytoprotection. Forced expression of wild-type p53val135 abrogated the protective effect of DEX, suggesting redundant cytoprotective effects of DEX and p53. Indeed, DEX induced moderate accumulation of p21WAF1/CIP1 in U87MG, LN-229 and p53 mutant LN-18 cells, but not in p53 mutant LN-308 or T98G cells. LN-18 is also the p53 mutant cell line with the best cytoprotective response to DEX. p21WAF1/CIP1 accumulation occurred in the absence of changes in p21WAF1/CIP1 mRNA expression. Wild-type p53 was not required for this DEX effect since DEX induced p21WAF1/CIP1 accumulation in p53val135-transfected LN-229 cells, too. DEX failed to induce p21WAF1/CIP1 expression or cytoprotection in untransformed rat astrocytes. The same lack of modulation of p21WAF1/CIP1 expression and drug toxicity was observed in p21(+/+), p21(+/-) and p21(-/-) human colon carcinoma cells. Paradoxically, while only p21(+/+) and p21(+/-) mouse embryonic fibroblasts showed enhance p21WAF1/CIP1 levels after exposure to DEX, only p21(-/-) fibroblasts were protected from drug toxicity by DEX. The present study links DEX-mediated protection from cancer chemotherapy to a p53-independent pathway of regulating p21WAF1/CIP1 expression in glioma cells but this effect appears to cell type-specific.  相似文献   

20.
Pancreatic ductal adenocarcinoma is one of the major causes of cancer mortality in the industrialized world, having among the poorest prognosis of any malignancy. Mutations or alterations in the p53 tumor suppressor gene/protein are observed in 50-70% of these cancers, yet little information is available regarding the phenotypic effects of restoration of wild-type (wt) p53 function in pancreatic ductal carcinoma cells. The consequences of stable reintroduction of wt p53 on apoptosis and differentiation was examined in a poorly differentiated pancreatic carcinoma cell line (Panc-1), possessing only mutant (mt) p53 (codon 273 mutation). Cells were transfected with a temperature-sensitive mouse p53val135 (tsp53) vector under additional control of a genetically-modified metallothionein promoter. This tsp53 has a 'mt' phenotype at 37.5 degrees C, and a 'wt' phenotype at 32.5 degrees C and the presence of 100 microM ZnCl2. Stable expression of wt p53 caused upregulation of the p21/WAF1 gene, and G1 growth arrest as shown by flow cytometry and BrdU labeling. Additionally, apoptosis was induced 8-12 post-induction in the majority of the cells (60-70%), as demonstrated by morphological changes, in situ TdT labeling and internucleosomal laddering. However, a subpopulation (30%) of the transfectants survived this apoptotic fate. Unlike the epithelial parental Panc-1 cells, these cells exhibited the appearance of a neuroendocrine-like phenotype with extensive branch-like processes, and marked cytoplasmic and cytoskeletal immunostaining for tau-2, synaptophysin, and chromogranin A. These studies suggest that stable and regulated expression of wt p53 can have multiple phenotypic consequences (apoptosis and altered differentiation to a neuroendocrine-like phenotype) in poorly-differentiated pancreatic carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号