首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Ceramics International》2017,43(10):7543-7551
The deposition rate, transmittance and resistivity of aluminium-doped zinc oxide (AZO) films deposited via radio frequency (r.f.) sputtering change with target thickness. An effective method to control and maintain AZO film properties was developed. The strategy only involved the regulation of target bias voltage of r.f. magnetron sputtering system. The target bias voltage considerably influenced AZO film resistivity. The resistivity of the as-deposited AZO film was 9.82×10−4 Ω cm with power density of 2.19 W/cm2 at target self-bias of −72 V. However, it decreased to 5.98×10−4 Ω cm when the target bias voltage was increased to −112 V by applying d.c. voltage. Both growth rate and optical band gap of AZO film increased with the absolute value of target bias voltage – growth rate increased from 10.54 nm/min to 25.14 nm/min, and band gap increased from 3.57eV to 3.71 eV when target bias voltage increased from −72 V to −112 V at r.f. power density of 2.19 W/cm2. The morphology of AZO films was slightly affected by the target bias voltage. Regulating target bias voltage is an effective method to obtain high-quality AZO thin films deposited via r.f. magnetron sputtering. It is also a good choice to maintain the quality of AZO film in uptime manufacturing deposition.  相似文献   

3.
In this study, the polyethylene terephthalate (PET) spunbonded nonwoven materials were used as substrates for creating electro-optical functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit Al-doped ZnO (AZO) films onto the nonwovens. The influences of the deposition time on the structural, optical, and electrical properties of AZO films were investigated. Atomic force microscopy (AFM) was employed to examine the topography of the fibers. The AFM observation revealed a significant difference in the morphology of the fibers before and after the AZO sputter coating. The examination by UV–visible spectrophotometer analysis showed that the nonwovens deposited with transparent nanostructure AZO films had better UV absorption, and an average transmittance was approximately 50% in the visible light wavelength region. The surface conductivity of the materials was analyzed using a four-probe meter, and it was found that electrical resistance was significantly decreased as the sputtering time increased.  相似文献   

4.
《Ceramics International》2016,42(9):10847-10853
Ta-doped ZnO films with different doping levels (0–5.02 at%) were prepared by radio frequency magnetron sputtering. The effects of the doping amount on the microstructure and the optical properties of the films were investigated. The grain size and surface roughness first significantly decrease and then slowly increase with the increase of Ta doping concentration. Both the grain size and the root mean square (RMS) roughness reach their minimum values at the doping content of 3.32 at%. X-ray Diffraction (XRD) patterns confirmed that the prepared Ta-doped ZnO films are polycrystalline with hexagonal wurtzite structure and a preferred orientation along the (002) plane. X-ray photoelectron spectroscopy (XPS) analysis reveals that Ta exists in the ZnO film in the Ta5+ and Ta4+ states. The average optical transmission values of the Ta-doped ZnO films are higher than those of the un-doped ZnO film in the visible region. The band gap energy extracted from the absorption edge of transmission spectra becomes large and the near band edge (NBE) emission energy obtained from PL spectra blueshifts to high energy when the Ta doping content grows from 0 at% to 5.02 at%, which can be explained by the Burstein–Moss shift.  相似文献   

5.
ZnO thin films without and with Ti buffer layer were prepared on Si and glass substrates by radio frequency (RF) magnetron sputtering. The effects of Ti buffer layer with different sputtering time on the microstructure and optical properties of ZnO thin films had been investigated by means of X-ray diffraction (XRD), energy dispersive spectrometer, X-fluorescence spectrophotometer and ultraviolet–visible spectrophotometer. The XRD results showed that the full-width at half-maximum (FWHM) for the ZnO (002) diffraction peak gradually decreased with the increase of sputtering time of Ti buffer layer, indicating that the crystalline quality of ZnO thin films was improved. The UV peak located at 390 nm, two blue peaks located at about 435 and 487 nm, two green peaks located at about 525 and 560 nm were observed from PL spectra. The PL spectra showed that the strongest blue light emission of ZnO films was obtained from Ti buffer layer with the sputtering time of 10 min. Meanwhile, the origins of the emission peaks were discussed through the Gaussian deconvolution. We also studied the optical band gaps.  相似文献   

6.
In this study, transparent conductive films of gallium-doped zinc oxide (GZO) are deposited on soda-lime glass substrates, under varied coating conditions (rf power, sputtering pressure, substrate-to-target distance and deposition time), using radio frequency (rf) magnetron sputtering, at room temperature. The effect of the coating parameters on the structural, morphological, electrical and optical properties of GZO films was studied. This study uses a grey-based Taguchi method, to determine the parameters of the coating process for GZO films, by considering multiple performance characteristics. In the confirmation runs, with grey relational analysis, improvements of 14.1% in the deposition rate, 39.81% in electrical resistivity and 1.38% in visible range transmittance were noted. The influence of annealing treatment, in a vacuum, oxygen, and nitrogen gas atmospheres, at temperatures ranging from 130 to 190 °C, for a period of 1 h, was also investigated. GZO films annealed at 190 °C, in a vacuum, showed the lowest electrical resistivity, at 1.07 × 10−3 Ω-cm, with about 85% optical transmittance, in the visible region. It is likely that films grown at lower temperatures (190 °C) could be coated onto polymeric substrates, to produce flexible optoelectronic devices.  相似文献   

7.
Ga-doped ZnO (GZO)/ZnO bi-layered films were deposited on glass substrates by radio frequency magnetron sputtering at different substrate temperatures of 100, 200 and 300 °C to investigate the effects of substrate temperature on the structural, electrical, and optical properties of the films. Thicknesses of the GZO and ZnO buffer layer were kept constant at 85 and 15 nm by controlling the deposition times.  相似文献   

8.
In the present work we prepared Aluminum doped Zinc Oxide (AZO) thin films from powder targets. Various concentrations (W/W percentages) of Al2O3 such as1%, 2%, 3%, 4%, 5%, 6%, 7% and 8% were mixed in ZnO powder and made in the form of a 3 inch disc target. These ceramic targets are sputtered in RF magnetron sputtering unit for the deposition of AZO thin films. Optical and electrical properties are analyzed to get an optimized percentage of mixing for achieving high transparency and low resistivity. At Al2O3 percentage of 3% there is a considerable decrement in the resistivity, and at 7% there is a considerable decrease in the optical transmittance. Mobility and carrier concentration are increasing with Al2O3 percentage. Bandgap of the films is observed to be decreasing with increasing the Al2O3 percentage.  相似文献   

9.
《Ceramics International》2016,42(3):4107-4119
Highly transparent metal–semiconductor–metal ultraviolet (UV) photoconductive sensors were fabricated using thin (less than 100 nm in thickness), dense, small-diameter ZnO nanocolumn arrays prepared via low-power, catalyst-free radio frequency (RF) magnetron sputtering at different oxygen flow rates ranging from 0 to 25 sccm. The FESEM images revealed the average nanocolumn diameter decreased with increasing oxygen flow rate. The transmittance spectra show that with the introduction of oxygen, the transmittance of the nanocolumn arrays in the visible region improves relative to that of a film prepared in the absence of oxygen with values greater than 95%. The UV responsivity and sensitivity were significantly improved for sputtered ZnO nanocolumn arrays prepared at oxygen flow rates up to 10 sccm, with the highest values of 9.70 mA/W and 2.20×104. Furthermore, the responsivity and sensitivity decreased at oxygen flow rates greater than 10 sccm, which can be attributed to the increased electrical resistance of the nanocolumn arrays. Our findings indicate that a high-performance UV photoconductive sensor can be realised using very thin sputtered ZnO nanocolumn arrays and that such a sensor would exhibit high sensitivity.  相似文献   

10.
Zinc sulfide [ZnS] thin films were deposited on glass substrates using radio frequency magnetron sputtering. The substrate temperature was varied in the range of 100°C to 400°C. The structural and optical properties of ZnS thin films were characterized with X-ray diffraction [XRD], field emission scanning electron microscopy [FESEM], energy dispersive analysis of X-rays and UV-visible transmission spectra. The XRD analyses indicate that ZnS films have zinc blende structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM data also reveal that the films have nano-size grains with a grain size of approximately 69 nm. The films grown at 350°C exhibit a relatively high transmittance of 80% in the visible region, with an energy band gap of 3.79 eV. These results show that ZnS films are suitable for use as the buffer layer of the Cu(In, Ga)Se2 solar cells.  相似文献   

11.
《Ceramics International》2016,42(13):14456-14462
Room temperature Al-doped ZnO (AZO) thin films with improved crystalline and optical properties were grown on normal glass substrates using unbalanced RF magnetron sputtering technique. To modify the plasma density towards the substrate and enhance the crystalline nature, an additional magnetic field ranging from 0 to 6.0 mT has been applied to the AZO target by proper tuning of solenoid coil current from 0 to 0.2 A respectively, which plays a significant role for controlling the physical properties of AZO films. The results from XRD studies indicate that all AZO films were composed of hexagonal wurtzite structure with better crystal quality through the applied magnetic field, ZnO (002) plane as a preferred growth. Furthermore, XPS studies suggested that symmetric chemical shifts in the binding energies for the Zn 2p and O1s levels with applied magnetic field. SEM analysis revealed the formation of a smooth, homogeneous and dense morphological surface with applied magnetic field. From AFM analysis, it was observed that the applied magnetic field strongly influenced the grain size and the films showed decreasing tendency in electrical resistivity. Films exhibited superior optical transmittance more than 94% in the visible region essentially due to the formation of better crystalline nature. The results indicate that improved band gap from 3.10 to 3.15 eV with additional magnetic field varied from 0 to 6.0 mT respectively.  相似文献   

12.
Manganese–cobalt–zinc oxide films are deposited on graphite foils by a dry process, simpler one-step radio frequency sputtering with different substrate treatment temperatures and bias potential. The best long-term operational stability (only reduce about 7% specific capacitance at the 8000th cycle of potential cycling) and good specific capacitance are obtained at a substrate treatment temperature of 200 °C and without substrate bias potential. Furthermore, the lower the substrate treatment temperature, the better the stability. Moreover, the specific capacitance of the manganese–cobalt–zinc oxide electrode decreases with increasing substrate bias potential.  相似文献   

13.
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.  相似文献   

14.
《Ceramics International》2022,48(20):30218-30223
The main reason ZnO is attractive for optoelectronic applications is its polarization behavior, which can modify its optical and electronic properties. Here, the polarization of ZnO is highly dependent on its structure and morphology. We study the polarization behavior of ZnO with different structures and morphology. A seedless ZnO nanocolumnars (ZnO NCs) array is fabricated using DC-unbalanced magnetron sputtering (DC-UBMS) with further thermal annealing treatment. Thermal annealing transforms the cone-like ZnO NCs to become rod-like ZnO NCs and significantly reduces the intensity of the crystal plane (002). Thermal annealing changes the polarization, where the annealed-ZnO 600°C exhibits the highest polarization that promotes the increase in lattice constant c and crystallite size. We found a football-like polarization response without saturation polarization, which indicates a presence of leakage current and defect on the samples. Interestingly, a ferroelectric characteristic is observed in annealed-ZnO 800°C with lower polarization than the annealed-ZnO 600°C. The origin of ferroelectricity is further investigated using a comprehensive study. This study provides a new understanding of polarization behavior on ZnO NCs, which is the essential key in designing switchable and non-volatile-based devices.  相似文献   

15.
《Ceramics International》2017,43(5):4536-4544
Al-doped zinc oxide (AZO) thin films were deposited onto flexible ultra-thin glass substrates by using a direct current (DC) magnetron sputtering process. The effects of sputtering power, working pressure and substrate temperature on the morphology and optoelectronic performances of AZO films were investigated. The optimal sputtering power, working pressure and substrate temperature for AZO film were determined to be 100 W, 0.9 Pa and 150 ℃, respectively. Further increasing or decreasing the sputtering power, working pressure and substrate temperature degrades the quality of AZO films. XRD patterns show all as-sputtered AZO thin films are preferred to grow along <0002> direction. Moreover, the largest grain size, which depicts the best microstructure of AZO films, matches with the smallest stress value. It can be seen from SEM images that the surface is smooth and dense. The smallest value of the resistivity is 1.784×10−3 Ω cm and the average transmittance of all AZO films in the visible range is about 80%. The X-ray photoelectron spectroscopy spectra show that the amount of Al element in the AZO film is very small.  相似文献   

16.
This study introduces optical properties of a columnar structured zinc oxide [ZnO] antireflection coating for solar cells. We obtained ZnO films of columnar structure on glass substrates using a specially designed radio frequency magnetron sputtering system with different growth angles. Field-emission scanning electron microscopy was utilized to check the growth angles of the ZnO films which were controlled at 0°, 15°, and 30°. The film thickness was fixed at 100 nm to get a constant experiment condition. Grain sizes of the ZnO films were measured by X-ray diffraction. A UV-visible spectrometer was used to measure the transmittance and reflectance of the ZnO film columnar structures as a function of the growth angles.  相似文献   

17.
The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young''s modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation.  相似文献   

18.
Tungsten and boron compounds belong to the group of superhard materials since their hardness could exceed 40?GPa. In this study, the properties of the tungsten boride WBx coatings deposited by radio frequency magnetron sputtering were investigated. The sputtering was performed from specially prepared targets that were composed of boron and tungsten mixed in a molar ratio of 2.5 and sintered in Spark Plasma Sintering (SPS) process. WB films were deposited on silicon (100) and stainless steel 304 substrates at temperatures of 23 ÷ 770?°C. Microstructure, chemical and phase composition were investigated by using Scanning Electron Microscope (SEM), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD), respectively. The mechanical properties like Vickers hardness and Young's modulus were obtained by using nanoindentation test at a load of 5 ÷ 100 mN. The friction coefficient and wear resistance of αWB coatings were investigated in scratch test and reciprocal sliding wear instrumentation. Moreover, in order to investigate thermal properties, the αWB films were annealed at 1000?°C in argon/air for 1?h and at 250?°C for 2?h in air atmosphere. Results of our research confirm that αWB coatings can be considered as an alternative to superhard materials in the production of wear resistant, long-lasting tools.  相似文献   

19.
ZnO films were prepared on unheated silicon substrate by RF magnetron sputtering technique. Postdeposition annealing of ZnO films in vacuum were found to improve film structure and electrical characteristics, such as dense structure, smooth surface, stress relief and increasing resistivity. Suitable annealing temperature also reduced loss factor. The correlation between annealing conditions and the physical structure of the films (crystalline structure and microstructure) was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The preferred annealing condition has been found to improve ZnO film characteristics for piezoelectric applications. An over-mode acoustic resonator using the ZnO film after annealing at 400 °C in vacuum circumstance for 1 h showed a large return loss of 42 dB at the center frequency of 1.957 GHz.  相似文献   

20.
Amorphous SiC films fabricated by Radio frequency (RF) magnetron sputtering have been widely used due to their excellent properties including high strength, good hardness and outstanding abrasion resistance. However, most researches set a lower target-substrate distance, which limits its large-scale coating for practical industrial application. In this work, the distance between the target and substrate was enlarged to 120 mm, and the effective coating area was about four to ten times than other researches. Furthermore, the effects of sputtering power, deposition pressure, substrate temperature and bias voltage on the structure and performance of SiC films were also investigated. Finally, SiC films with high elasticity modulus (310.8 GPa) and hardness (35.6 GPa) are obtained by RF magnetron sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号