首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B-doped a-Si1−xCx:H films for a window layer of Si thin film solar cells have been prepared by the Cat-CVD method. It is found that C is effectively incorporated into the films by using C2H2 as a C source gas, where an only little C incorporation is observed from CH4 and C2H6 under similar deposition conditions. Using a-Si1−xCx:H films grown from C2H2, heterojunction p–i–n solar cells have been prepared by the Cat-CVD method. The cell structure is (SnO2 Asahi-U)/ZnO/a-Si1−xCx:H(p)/a-Si:H(i)/μc-Si:H(n)/Al. The obtained conversion efficiency was 5.4%.  相似文献   

2.
Bian Bo  Yie Jian  Cao Yi  Wu Zi-Qin   《Thin solid films》1993,230(2):160-166
The crystallization behavior of a-Si1−xCx:H/Al films after annealing has been investigated by transmission electron microscopy and Raman scattering. It is found that the crystallization process is complex and non-uniform, and that both equiaxial and branching Si grains with many twins and stacking faults arise at annealing temperatures as low as 250 °C. Both fine polycrystalline β-SiC grains and fractal-like -SiC aggregates are first observed in a few regions in a-Si1−xCx:H/Al films annealed at 350 °C. The increase of the Al grain size can cause a decrease in the crystallization temperature and a rise in the grain growth rate of Si. At higher annealing temperatures, the reaction process SiC+Al→Al4C3+Si is predominant.  相似文献   

3.
Microcrystalline silicon carbide (μc-Si1−xCx) films were successfully deposited by the hot wire cell method using a gas mixture of SiH4, H2 and C2H2. It was confirmed by Fourier transform infrared and X-ray diffraction analyses that the films consisted of μc-Si grains embedded in a-Si1−xCx tissue. The p-type μc-Si1−xCx films were deposited using B2H6 as a doping gas. A dark conductivity of 0.2 S/cm and an activation energy of 0.067 eV were obtained. The p-type μc-Si1−xCx was used as a window layer of a-Si solar cells, in which the intrinsic layer was deposited by photo-chemical vapor deposition, and an initial conversion efficiency of 10.2% was obtained.  相似文献   

4.
Doping and electrical characteristics of in-situ heavily B-doped Si1−xyGexCy (0.22<x<0.6, 0<y<0.02) films epitaxially grown on Si(100) were investigated. The epitaxial growth was carried out at 550°C in a SiH4–GeH4–CH3SiH3–B2H6–H2 gas mixture using an ultraclean hot-wall low-pressure chemical vapor deposition (LPCVD) system. It was found that the deposition rate increased with increasing GeH4 partial pressure, and only at high GeH4 partial pressure did it decrease with increasing B2H6 as well as CH3SiH3 partial pressures. With the B2H6 addition, the Ge and C fractions scarcely changed and the B concentration (CB) increased proportionally. The C fraction increased proportionally with increasing CH3SiH3 partial pressures. These results can be explained by the modified Langmuir-type adsorption and reaction scheme. In B-doped Si1−xyGexCy with y=0.0054 or below, the carrier concentration was nearly equal to CB up to approximately 2×1020 cm−3 and was saturated at approximately 5×1020 cm−3, regardless of the Ge fraction. The B-doped Si1−xyGexCy with high Ge and C fractions contained some electrically inactive B even at the lower CB region. Resistivity measurements show that the existence of C in the film enhances alloy scattering. The discrepancy between the observed lattice constant and the calculated value at the higher Ge and C fraction suggests that the B and C atoms exist at the interstitial site more preferentially.  相似文献   

5.
Nanocrystalline Ba1−xSrxTiO3 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) precursors were synthesized using the stearic acid gel method. After the precursors had been calcined at 600–950°C for 0.5–1 h, nanocrystalline powders with the cubic perovskite structure were obtained and these were made into thick films. The powder samples were characterized by differential thermal analysis, X-ray diffraction and transmission electron microscopy, and the thick film samples were characterized by scanning electron microscopy and X-ray diffraction. The humidity-sensitive properties of the nanocrystalline Ba1−xSrxTiO3 thick films were investigated. The results show that these nanocrystalline thick films possess higher humidity sensitivity and lower resistance than those of conventional materials.  相似文献   

6.
Solid solutions of Bi3(Nb1−xTax)O7 (x = 0.0, 0.3, 0.7, 1) were synthesized using solid state reaction method and their microwave dielectric properties were first reported. Pure phase of fluorite-type could be obtained after calcined at 700 °C (2 h)−1 between 0 ≤ x ≤ 1 and Bi3(Nb1−xTax)O7 ceramics could be well densified below 990 °C. As x increased from 0.0 to 1.0, saturated density of Bi3(Nb1−xTax)O7 ceramics increased from 8.2 to 9.1 g cm−3, microwave permittivity decreased from 95 to 65 while Qf values increasing from 230 to 560 GHz. Substitution of Ta for Nb modified temperature coefficient of resonant frequency τf from −113 ppm °C−1 of Bi3NbO7 to −70 ppm °C−1 of Bi3TaO7. Microwave permittivity, Qf values and τf values were found to correlate strongly with the structure parameters of fluorite solid solutions and the correlation between them was discussed in detail. Considering the low densified temperature and good microwave dielectric proprieties, solid solutions of Bi3(Nb1−xTax)O7 ceramics could be a good candidate for low temperature co-fired ceramics application.  相似文献   

7.
We report the growth of Si1−yCy and Si1−xyGexCy alloys on Si(001) by electron cyclotron resonance plasma-assisted Si molecular beam epitaxy using an argon/methane gas mixture. Various Si/Si1−yCy and Si/Si1−xyGexCy multilayers have been grown and characterized principally by X-ray diffraction and Raman spectroscopy. The influence of growth parameters and electron cyclotron resonance plasma source operating conditions on the C substitutional incorporation was studied. Under optimum growth conditions the structures show good structural properties and sharp interfaces with carbon being essentially substitutionally incorporated up to concentrations of 1%. No significant carbon incorporation was measured in films grown under a high methane partial pressure without plasma excitation. Si1−xyGexCy layers grown with this technique exhibit the strain compensation and enhanced thermal stability expected for these ternary alloys. Carbon pre-deposition of Si through surface exposure to the argon/methane plasma is shown to act as an antisurfactant on the growth of Ge islands by suppressing the formation of a Ge wetting layer on the surface.  相似文献   

8.
We report on epitaxial {1 0 0} K1−xRbxTiOPO4 waveguide films for the visible spectral range grown on KTiOPO4 substrates by liquid phase epitaxy. Using the m-line technique a refractive index increase of Δnx≈0.007 and Δnz≈0.004 for TM and TE polarisation has been determined for a K0.78Rb0.22TiOPO4 film. Optical transmission and nearfield distribution are comparable to conventional ion-exchanged waveguides. Typical attenuation of about 1 dB/cm for both TM and TE polarisation was obtained at λ=532 and 1064 nm. Energy-dispersive X-ray spectrometry reveals solid-solution films with graded rubidium composition profiles. X-ray rocking curve analyses confirm the epitaxial growth process and indicate perfect and relaxed K1−xRbxTiOPO4 films. Atomic force microscopy investigations reveal regular step structures with step heights Δh<1.3 nm resulting in rms-roughness values of ≈0.4 nm.  相似文献   

9.
AgInSnxS2−x (x = 0–0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 °C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 °C, otherwise they are n-type. The optical properties of AgInSnxS2−x (x < 0.2) resemble those of chalcopyrite AgInS2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSnxS2−x (x < 2) thin films.  相似文献   

10.
Highly oriented YNixMn1−xO3 thin films on SrTiO3 (100) substrates were achieved by using pulsed laser deposition for x = 0.33 and x = 0.50. We used a combination of X-ray diffraction, scanning electron microscopy, atomic force microscopy, and magnetic-property measurements. The magnetic transition temperatures (Tc) of the as-grown films are higher than the corresponding bulk values (typically 85 K instead of 80 K, for x = 0.5, and 60 K instead of 50 K, for x = 0.33). Our magnetic measurements also suggest a spin-glass characteristic in the x = 0.33 films, while a cluster glasslike behavior is observed for the films with x = 0.5, which is quite different from that of the bulk samples. Finally, the influence of post-deposition heat treatment on the magnetic properties of the as-grown films is discussed.  相似文献   

11.
A design of a gradient bandgap Ti1−xVxO2 thin film electrode for wet-type solar cells is provided. The gradient bandgap film electrodes were prepared by heating stacked layers of varying V/Ti ratios using the sol-gel method. A composition gradient was observed for some of the samples by X-ray photoelectron spectroscopy although it was not very large. For the Ti1−xVxO2 film electrodes, conspicuous visible light photoresponse and photoelectrochemical stability were observed. The photocurrent increased with increasing bias potential. However, the photocurrent onset potentials of the Ti1−xVxO2 film electrodes were more positive than those of TiO2 film electrodes, probably owing to the high surface state density introduced by the diffusion of vanadium ions.  相似文献   

12.
Cat-CVD method has been applied to the growth of Si–C and Si–C–O alloy thin films. Growth mechanism has been studied with emphasis on the effects of filament materials. Growth rates and alloy compositions were measured for W, Ta, Mo and Pt filaments at the filament temperatures ranging from 1300 to 2000 °C. Si1−xCx films with x ranging from 0.38 to 0.7 could be grown by using single molecule source Si(CH3)2H2 (dimethylsilane). Si–C–O ternary alloy films was successfully prepared by using Si(OC2H5)4 (tetraethoxysilane) and Si(CH3)2(OCH3)2 (dimethyldimethoxysilane) molecules.  相似文献   

13.
Bing Yan  Xue-Qing Su 《Optical Materials》2007,29(12):1866-1870
YxGd1−xVO4:Tm3+ (5 mol%) phosphors were prepared by in situ co-precipitation technology with the different content ratio of Y/Gd (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, respectively). During the process, rare earth coordination polymers with o-hydroxylbenzoate were used as precursors, composing with polyethylene glycol (PEG) as dispersing media. After heat-treatment of the resulting multicomponent hybrid precursors at 900 °C, the samples were obtained. SEM indicated the particles present good crystalline state, whose crystalline grain sizes were about 0.2–2 μm. Under the excitation of 257 nm, all the materials show the characteristic emission of Tm3+ which is the strong blue emission centered at 475 nm originating from 1G4 → 3H6 of Tm3+. Besides this, concentration quenching appears in the system of YVO4:Tm3+ and GdVO4:Tm3+. And when x reaches 0.5, the system of YxGd1−xVO4:Tm3+ shows the strongest blue emission.  相似文献   

14.
Ferroelectric/superconductor heterostructures   总被引:2,自引:0,他引:2  
This review covers the fabrication and characterization of ferroelectric/superconductor heterostructures such as Pb(ZrxTi1−x)O3/YBa2Cu3O7−δ (YBCO), BaTiO3/YBCO and BaxSr1−xTiO3/YBCO etc. on various single crystal substrates. Pulsed laser deposition, laser molecular beam epitaxy, and magnetron-sputtering methods are compared. This report shows that pulsed laser deposition equipped with in situ reflection high-energy electron diffraction is a good method to control the growth mode of YBCO thin films. Furthermore, laser molecular beam epitaxy is a superb method for research of complex oxide films and their superlattices. Atomic force microscopy and transmission electron microscopy showed the ferroelectric films grown on the rough surface of the YBCO films produced high-density planar defects in the film and is detrimental to the ferroelectric/dielectric properties of the heterostructures. Therefore, for device usage, it is more advantageous to use SrRuO3 than YBCO as the bottom electrode material. For growing atomically smooth surface films step-flow mode is highly recommended. Prospects of microwave device application of the ferroelectric/superconductor heterostructures are discussed, and proposed the BSTO films as the best candidate for passive microwave components.  相似文献   

15.
Thin films of different molybdenum carbides (δ-MoC1−x, γ′-MoC1−x and Mo2C) have been deposited from a gas mixture of MoCl5/H2/C2H4 at 800°C by CVD. The H2 content in the vapour has a strong influence on the phase composition and microstructure. Typically, high H2 contents lead to the formation of nanocrystalline δ-MoC1−x films while coarse-grained γ′-MoC1−x is formed with an H2-free gas mixture. This phase has previously only been synthesized by carburization of Mo in a CO atmosphere and it has therefore been considered as an oxycarbide phase stabilized by the presence of oxygen in the lattice. Our results, however, show that γ′-MoC1−x films containing only trace amounts of oxygen can be deposited by CVD. Stability calculations using a FP-LMTO method confirmed that the γ′-MoC1−x phase is stabilized by oxygen but that the difference in energy between e.g. δ-MoC0.75 and oxygen-free γ′-MoC0.75 is small enough to allow the synthesis of the latter phase in the absence of kinetic constraints. Annealing experiments of metastable δ-MoC1−x and γ′-MoC1−x films showed two different reaction products suggesting that kinetic effects play an important role in the decomposition of these phases.  相似文献   

16.
High quality GaN epitaxial layers were obtained with AlxGa1−xN buffer layers on 6H–SiC substrates. The low-pressure metalorganic chemical vapor deposition (LP-MOCVD) method was used. The 500 Å thick buffer layers of AlxGa1−xN (0≤x≤1) were deposited on SiC substrates at 1025°C. The FWHM of GaN (0004) X-ray curves are 2–3 arcmin, which vary with the Al content in AlxGa1−xN buffer layers. An optimum Al content is found to be 0.18. The best GaN epitaxial film has the mobility and carrier concentration about 564 cm2 V−1 s−1 and 1.6×1017 cm−3 at 300 K. The splitting diffraction angle between GaN and AlxGa1−xN were also analyzed from X-ray diffraction curves.  相似文献   

17.
Nd doped fluoroapatites SrxCa5−x(PO4)3F(SxC5−xPF, X = 0, 1, 2, 3, 4, and 5) single crystals have been grown by the Czochralski technique. Their polarized absorption and emission spectra have been recorded at room temperature and used to calculate the absorption and stimulated emission cross sections. Broadening of the absorption and emission bands is observed for Nd3+ in the solid solutions SPF-CPF compared to Nd3+ in CPF or SPF. 1% Nd:SxC5−xPF, X = 0, 2, 3, 4, and 5, laser rods have been tested in a cavity longitudinally pumped by a 1 W AlGaAs laser diode and compared to Nd:YAG and Nd:YVO4 rods. All fluoroapatites exhibit very good laser performance with low thresholds and high slope efficiencies, higher than in the case of YAG and equal to the YVO4 samples. The dependance of the laser output power versus the diode temperature has also been measured for all materials. The laser output was found to be as sensitive to the diode temperature fluctuations for fluoroapatites as for YAG.  相似文献   

18.
Hg1−xCdxTe films were prepared on Si-patterned substrates by the pulse laser deposition technique from a Hg1−xCdxTe target (x≈0.2). The effects of different substrate temperatures, ranging from 293 to 543 K, different laser shots number in the range of 10–380, and the morphological type of the patterned substrate on the x-composition of films were studied by electron probe microanalysis (EPMA) and electroreflectance (ER) spectroscopy. The correlation between a film composition measured by EPMA and one determined from ER spectra data was observed.  相似文献   

19.
The E1 and E11 energy bands of metal–organic chemical vapor deposition grown AlxGa1−xAs, with x in the range 0–0.55, have been determined using photoreflectance technique. The aluminum composition for each sample was determined using the energy of the room-temperature photoluminescence compensated peak value and a suitable fundamental band gap formula. The positions of the E1 and E11 peaks were determined from curve-fitting an appropriate theoretical model to our experimental data by a modified downhill simplex method. Using the results, we propose new E1 and E11 cubic expressions as functions of the aluminum composition, x, and compare them with the available reported expressions.  相似文献   

20.
(Ti1−xAlx)N films were prepared on a Si wafer at 700°C from toluene solution of alkoxides (titanium tetraetoxide and aluminum tri-butoxide) in an Ar/N2/H2 plasma by the thermal plasma chemical vapor deposition (CVD) method. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, electrical resistivity, and Vickers micro-hardness. Single phase TiN formed at an Al atomic fraction of 0–0.2, with a mixed TiN and AlN phase occurring up to 0.6 and single phase AlN forming above 0.8. The films had relatively sooth surfaces, 0.4 μm thick at an Al atomic fraction of 0.2, and thickened with increasing Al fraction. The atomic concentration of Ti, Al, N, O, and C determined from their respective XPS areas showed that the Ti and Al contents of the films changes with the solution composition in a complementary way. The impurities were about 10 at.% oxygen and carbon. The electrical resistivity was almost unchanged from the value of 103 μΩ cm at 0–0.6 Al but then suddenly increased to 104 μΩ cm at higher Al contents. The hardness showed a synergic maximum of about 20 GPa at an Al fraction of 0.6–0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号