首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B-doped a-Si1−xCx:H films for a window layer of Si thin film solar cells have been prepared by the Cat-CVD method. It is found that C is effectively incorporated into the films by using C2H2 as a C source gas, where an only little C incorporation is observed from CH4 and C2H6 under similar deposition conditions. Using a-Si1−xCx:H films grown from C2H2, heterojunction p–i–n solar cells have been prepared by the Cat-CVD method. The cell structure is (SnO2 Asahi-U)/ZnO/a-Si1−xCx:H(p)/a-Si:H(i)/μc-Si:H(n)/Al. The obtained conversion efficiency was 5.4%.  相似文献   

2.
K. Saito  Y. Uchiyama  K. Abe 《Thin solid films》2003,430(1-2):287-291
Using the catalytic chemical vapor deposition (Cat-CVD) method, a-Si and SiNx films have been the main focus of studies. SiO2 films have not been studied because of the limited life of catalysts such as tungsten or molybdenum in an oxidative atmosphere. In this report, we describe oxide film preparation using an iridium catalyst. We determined the most appropriate catalyst material for the oxide film process by exposing heated materials in tetraethoxysilane (TEOS) or O2 gas. As the result, it was confirmed that the Ir catalyst works in a slow oxidative atmosphere. Using the Ir catalyst, SiO2 films were deposited in two gas combinations: TEOS and N2O, and SiH4 and N2O. Although the SiO2 film processed with the combination of TEOS and N2O was stoichiometric, its breakdown voltage is not sufficient. The SiO2 film processed with the combination of SiH4 and N2O showed good electrical property.  相似文献   

3.
Super-hydrophobic poly-tetrafluoroethylene (PTFE) films, with a water contact angle of over 160°, are formed by catalytic chemical vapor deposition (Cat-CVD) under high catalyzer temperature or pressure. Hydrophobicity of the PTFE films is maintained even after annealing up to 300 °C. We demonstrate a novel method for forming metal lines using super-hydrophobic PTFE films. Water-based functional liquid containing silver nanoparticles dropped on the patterned PTFE film localizes only on hydrophilic regions, resulting in formation of metal lines after annealing up to 150 °C.  相似文献   

4.
Coverage properties of silicon nitride film prepared by the Cat-CVD method   总被引:2,自引:0,他引:2  
The coverage properties of silicon nitride (Si3N4) films prepared by the catalytic chemical vapor deposition (Cat-CVD) technique were systematically studied. By increasing the catalyzer–substrate distance, the coverage was improved from 46 to 67% on a 1.0-μm line and space pattern. The etching rate of Cat-CVD Si3N4 film measured using 16BHF solution was independent of the deposited position of the micro-patterns deposited, and was approximately 3 nm/min, one order of magnitude lower than that of plasma-enhanced CVD (PE-CVD) Si3N4 film. This means that Cat-CVD Si3N4 films are denser than PE-CVD Si3N4 films, and that the quality at the side wall is equivalent to that on the top surface. That is, Cat-CVD Si3N4 films show a passivation effect, which was excellent, even at the side wall of micro-patterns. These results suggest that Si3N4 films prepared by Cat-CVD are suitable for the passivation films in microelectronic devices having a step configuration, such as TFT-LCDs and ULSIs.  相似文献   

5.
Development of Cat-CVD apparatus for 1-m-size large-area deposition   总被引:1,自引:0,他引:1  
Thin film deposition on large-area substrates of 1-m size is demonstrated by catalytic chemical vapor deposition (Cat-CVD) apparatus equipped with a newly developed showerhead catalyzer unit. The arrangement of catalyzer wires for uniform film thickness was determined by simulation, assuming that decomposed species on catalyzers were transported by isotropic thermal diffusion without an influence of the gas flow. A film thickness uniformity of ±7.5% was successfully achieved on a substrate of 400 mm×960 mm at an average deposition rate of 32 nm/min for hydrogenated amorphous silicon (a-Si:H) film. Film thickness uniformity of ±8.6% for a-Si:H film and ±12.3% for silicon nitride film were also successfully obtained on substrates of 680 mm×880 mm size at an average deposition rate of 12.1 and 2.5 nm/min, respectively. These results suggest that Cat-CVD is a promising method for the fabrication of large-area devices such as thin-film-transistor liquid-crystal displays and solar cells.  相似文献   

6.
We review the recent progress of Cat-CVD research in Japan since the 1st Cat-CVD conference in Kanazawa in 2000. Some groups, including ours, succeeded in realizing large-area deposition of amorphous silicon (a-Si) of approximately 1 m size, and thin film transistors (TFTs) with a mobility over several 10s of cm2 V−1 s−1 are fabricated using Cat-CVD polycrystalline silicon (poly-Si) films. Extensive studies of in situ cleaning methods revealed that a high rate of chamber cleaning is possible in Cat-CVD systems. Solar cell research is now carried out within the New Energy and Industrial Technology Development Organization (NEDO) project, and the study of Cat-CVD Si3N4 films prepared at lower than 100 °C is now a Japan Science and Technology Corporation (JST) project to use them as coatings on organic devices. The feasibility of Cat-CVD for various applications has been widely demonstrated, along with further understanding of the fundamental mechanism of the Cat-CVD process.  相似文献   

7.
In this paper, bulk-Si metal–oxide–semiconductor field effect transistors (MOSFETs) are fabricated using the catalytic chemical vapor deposition (Cat-CVD) method as an alternative technology to the conventional high-temperature thermal chemical vapor deposition. Particularly, formation of low-resistivity phosphorus (P)-doped poly-Si films is attempted by using Cat-CVD-deposited amorphous silicon (a-Si) films and successive rapid thermal annealing (RTA) of them. Even after RTA processes, neither peeling nor bubbling are observed, since hydrogen contents in Cat-CVD a-Si films can be as low as 1.1%. Both the crystallization and low resistivity of 0.004 Ω·cm are realized by RTA at 1000 °C for only 5 s. It is also revealed that Cat-CVD SiNx films prepared at 250 °C show excellent oxidation resistance, when the thickness of films is larger than approximately 10 nm for wet O2 oxidation at 1100 °C. It is found that the thickness required to stop oxygen penetration is equivalent to that for thermal CVD SiNx prepared at 750 °C. Finally, complementary MOSFETs (CMOSs) of single-crystalline Si were fabricated by using Cat-CVD poly-Si for gate electrodes and SiNx films for masks of local oxidation of silicon (LOCOS). At 3.3 V operation, less than 1.0 pA μm−1 of OFF leakage current and ON/OFF ratio of 107–108 are realized, i.e. the devices can operate similarly to conventional thermal CVD process.  相似文献   

8.
We have found that SiN passivation by catalytic chemical vapor deposition (Cat-CVD) can significantly increase an electron density of an AlGaN/GaN heterostructure field-effect transistor (HFET). This effect enables thin-barrier HFET structures to have a high-density two-dimensional electron gas and leads to suppression of short-channel effects. We fabricated 30-nm-gate Al0.4Ga0.6N(8 nm)/GaN HFETs using Cat-CVD SiN. The maximum drain current density and extrinsic transconductance were 1.49 A/mm and 402 mS/mm, respectively. Current-gain cutoff frequency and maximum oscillation frequency of the HFETs were 181 and 186 GHz, respectively. These high-frequency device characteristics are sufficiently high enough for millimeter-wave applications.  相似文献   

9.
Bian Bo  Yie Jian  Cao Yi  Wu Zi-Qin   《Thin solid films》1993,230(2):160-166
The crystallization behavior of a-Si1−xCx:H/Al films after annealing has been investigated by transmission electron microscopy and Raman scattering. It is found that the crystallization process is complex and non-uniform, and that both equiaxial and branching Si grains with many twins and stacking faults arise at annealing temperatures as low as 250 °C. Both fine polycrystalline β-SiC grains and fractal-like -SiC aggregates are first observed in a few regions in a-Si1−xCx:H/Al films annealed at 350 °C. The increase of the Al grain size can cause a decrease in the crystallization temperature and a rise in the grain growth rate of Si. At higher annealing temperatures, the reaction process SiC+Al→Al4C3+Si is predominant.  相似文献   

10.
The effects of nitrogen ion bombardment on TiO2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO2 film increased with irradiation time. The refractive index n of the TiO2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 × 10− 2 to 1.2 × 10− 1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film.  相似文献   

11.
Yohei Ogawa 《Thin solid films》2008,516(5):611-614
Silicon oxynitride (SiOxNy) films have been formed by adding proper amount of oxygen gas to usual forming condition of silicon nitride (SiNx) films in catalytic chemical vapor deposition (Cat-CVD) method. The composition and refractive index of the film can be systematically controlled by changing oxygen flow rate. Organic light-emitting diodes (OLEDs) covered with SiNx/SiOxNy stacked films have been completely protected from damage due to oxygen and moisture and their initial emission intensity is maintained over 1000 hours under 60 °C and 90% RH, which is equivalent to 50 000 hours in normal temperature and humidity conditions.  相似文献   

12.
(Ti1−xAlx)N films were prepared on a Si wafer at 700°C from toluene solution of alkoxides (titanium tetraetoxide and aluminum tri-butoxide) in an Ar/N2/H2 plasma by the thermal plasma chemical vapor deposition (CVD) method. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, electrical resistivity, and Vickers micro-hardness. Single phase TiN formed at an Al atomic fraction of 0–0.2, with a mixed TiN and AlN phase occurring up to 0.6 and single phase AlN forming above 0.8. The films had relatively sooth surfaces, 0.4 μm thick at an Al atomic fraction of 0.2, and thickened with increasing Al fraction. The atomic concentration of Ti, Al, N, O, and C determined from their respective XPS areas showed that the Ti and Al contents of the films changes with the solution composition in a complementary way. The impurities were about 10 at.% oxygen and carbon. The electrical resistivity was almost unchanged from the value of 103 μΩ cm at 0–0.6 Al but then suddenly increased to 104 μΩ cm at higher Al contents. The hardness showed a synergic maximum of about 20 GPa at an Al fraction of 0.6–0.8.  相似文献   

13.
Doping and electrical characteristics of in-situ heavily B-doped Si1−xyGexCy (0.22<x<0.6, 0<y<0.02) films epitaxially grown on Si(100) were investigated. The epitaxial growth was carried out at 550°C in a SiH4–GeH4–CH3SiH3–B2H6–H2 gas mixture using an ultraclean hot-wall low-pressure chemical vapor deposition (LPCVD) system. It was found that the deposition rate increased with increasing GeH4 partial pressure, and only at high GeH4 partial pressure did it decrease with increasing B2H6 as well as CH3SiH3 partial pressures. With the B2H6 addition, the Ge and C fractions scarcely changed and the B concentration (CB) increased proportionally. The C fraction increased proportionally with increasing CH3SiH3 partial pressures. These results can be explained by the modified Langmuir-type adsorption and reaction scheme. In B-doped Si1−xyGexCy with y=0.0054 or below, the carrier concentration was nearly equal to CB up to approximately 2×1020 cm−3 and was saturated at approximately 5×1020 cm−3, regardless of the Ge fraction. The B-doped Si1−xyGexCy with high Ge and C fractions contained some electrically inactive B even at the lower CB region. Resistivity measurements show that the existence of C in the film enhances alloy scattering. The discrepancy between the observed lattice constant and the calculated value at the higher Ge and C fraction suggests that the B and C atoms exist at the interstitial site more preferentially.  相似文献   

14.
Highly oriented YNixMn1−xO3 thin films on SrTiO3 (100) substrates were achieved by using pulsed laser deposition for x = 0.33 and x = 0.50. We used a combination of X-ray diffraction, scanning electron microscopy, atomic force microscopy, and magnetic-property measurements. The magnetic transition temperatures (Tc) of the as-grown films are higher than the corresponding bulk values (typically 85 K instead of 80 K, for x = 0.5, and 60 K instead of 50 K, for x = 0.33). Our magnetic measurements also suggest a spin-glass characteristic in the x = 0.33 films, while a cluster glasslike behavior is observed for the films with x = 0.5, which is quite different from that of the bulk samples. Finally, the influence of post-deposition heat treatment on the magnetic properties of the as-grown films is discussed.  相似文献   

15.
Crystallization by excimer-laser annealing (ELA) for hydrogenated amorphous silicon (a-Si:H) films with low hydrogen content (CH) prepared by catalytic chemical vapor deposition (Cat-CVD) was systematically studied. From optical microscopy images, no hydrogen bubbling was observed during ELA, even without a dehydrogenation process. As the laser energy density was increased to 300 mJ cm−2, the full width at half-maximum of the Raman signal from the crystalline phase decreased to approximately 4 cm−1. This value is almost equal to or even smaller than that reported for polycrystalline Si (poly-Si) films prepared from plasma-enhanced CVD (PECVD) a-Si:H films by ELA so far. The average grain size, estimated from scanning electron microscopy, was approximately 500 nm for CH of 1.3 at.%. On the other hand, the grain size of poly-Si films prepared from PECVD a-Si:H films with a dehydrogenation process was only 200 nm. The technique using Cat-CVD films is expected to be used for fabrication of low-temperature high-mobility thin-film transistors.  相似文献   

16.
We report the growth of Si1−yCy and Si1−xyGexCy alloys on Si(001) by electron cyclotron resonance plasma-assisted Si molecular beam epitaxy using an argon/methane gas mixture. Various Si/Si1−yCy and Si/Si1−xyGexCy multilayers have been grown and characterized principally by X-ray diffraction and Raman spectroscopy. The influence of growth parameters and electron cyclotron resonance plasma source operating conditions on the C substitutional incorporation was studied. Under optimum growth conditions the structures show good structural properties and sharp interfaces with carbon being essentially substitutionally incorporated up to concentrations of 1%. No significant carbon incorporation was measured in films grown under a high methane partial pressure without plasma excitation. Si1−xyGexCy layers grown with this technique exhibit the strain compensation and enhanced thermal stability expected for these ternary alloys. Carbon pre-deposition of Si through surface exposure to the argon/methane plasma is shown to act as an antisurfactant on the growth of Ge islands by suppressing the formation of a Ge wetting layer on the surface.  相似文献   

17.
We have studied the electrical and magnetic properties of p-type semiconductor thin films of Si1 − xMnx/Si (x = 0.036 and 0.05) grown by molecular beam epitaxy. Experimental results reveal that the resistivity of the samples decreases gradually with increasing measurement temperature, which can be described well by Mott's variable-range-hopping model. All the samples exhibit the ferromagnetic ordering above room temperature. Among these samples, Si0.95Mn0.05 has a higher hole density and magnetization. This indicates an enhancement of hole-mediated ferromagnetic exchange interactions when the Mn-doping concentration is increased.  相似文献   

18.
TiO2 thin films prepared by Hot-Wire CVD method have been studied as a protecting material of transparent conducting oxide (TCO) against atomic hydrogen exposures for the fabrications of Si thin film solar cells. It was found that electrical conductivity of the films at room temperature reached a value of 0.4 S/cm. This value is 2-3 orders of magnitude higher than that of TiO2 films prepared by RF magnetron sputtering and electron-beam evaporation methods in our previous works. The conductivity improvement seems to be partly due to the enlargement of TiO2 crystallites.  相似文献   

19.
Thin films of Mo1−xSnx, continuously and linearly mapped for 0<x<1, have been prepared by d.c. magnetron sputter deposition under various growth conditions. X-ray diffraction results indicate that as x in high-pressure deposited Mo1−xSnx increases from 0 to approximately 0.45, the bcc lattice expands and no new phases are formed. At low deposition pressures, Mo3Sn, a β-tungsten structured phase, is formed along with the bcc Mo–Sn solid solution for 0.1<x<0.3. The variation of the lattice parameter for this intermetallic phase also indicates that solid solutions, possibly of the form Mo3+ySn, are being formed. These materials are of special interest as anode candidates in lithium-ion batteries.  相似文献   

20.
Experimental data on the phase formation process of amorphous IrxSi1−x thin films with 0.30 ≤ x ≤ 0.41 are presented and discussed in relation to electric transport properties. The structure formation process at temperatures from 300 K up to 1223 K was investigated by means of X-ray diffraction. Distinct phases were observed in the final stage in dependence on the initial composition: Ir3Si4, Ir3Si5, and IrSi3. An unknown metastable phase was found in films with a silicon concentration of 61 at.% to 64 at.% after annealing above the crystallization temperature T = 970 K. The crystal structure of this phase was determined by the combined use of X-ray diffraction and electron diffraction. It was found to be monoclinic, basic-face centred with lattice constants a = 1.027 nm, b = 0.796 nm, c = 0.609 nm, and γ = 113.7°. Additionally, microstructure and morphology of the films were investigated by transmission electron microscopy (TEM). The annealing process was studied by means of mechanical stress investigations as well as by electrical resistivity and thermopower measurements. Correlations between the structure, the phase formation and the electrical transport behaviour are discussed on the basis of conduction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号