共查询到19条相似文献,搜索用时 109 毫秒
1.
粗糙集是处理不精确、不确定性问题的基本方法之一。采用粗糙集理论与方法进行数据分析具有不必具备数据集的先验知识、不需人为设定参数等优点,因而它被广泛应用于模式识别与数据挖掘领域。针对粗糙集训练过程中从未遇到过的样本的分类问题进行了探讨,根据条件属性的重要性确定加权系数,采用加权KNN的方法来解决无法与决策规则精确匹配的样本分类问题,并与加权最小距离方法进行了对比实验;同时对其他一些现有的粗糙集值约简算法进行了分析与研究,提出了不同的观点。对UCI多个数据集的大量数据进行了实验,并与近期文献中的多种算法进行了性能对比,实验结果表明,提出的算法的总体效果优于其他算法。 相似文献
2.
3.
4.
5.
一种基于关联规则挖掘的粗糙集约简算法 总被引:6,自引:1,他引:6
针对粗糙集理论中的约简这个重要问题进行了研究,引入关联规则挖掘中的支持度和置信度概念,提出一种基于关联规则挖掘算法思想的约简算法,从而得到更有效的约简。 相似文献
6.
为降低集成特征选择方法的计算复杂性,提出了一种基于粗糙集约简的神经网络集成分类方法。该方法首先通过结合遗传算法求约简和重采样技术的动态约简技术,获得稳定的、泛化能力较强的属性约简集;然后,基于不同约简设计BP网络作为待集成的基分类器,并依据选择性集成思想,通过一定的搜索策略,找到具有最佳泛化性能的集成网络;最后通过多数投票法实现神经网络集成分类。该方法在某地区Landsat 7波段遥感图像的分类实验中得到了验证,由于通过粗糙集约简,过滤掉了大量分类性能欠佳的特征子集,和传统的集成特征选择方法相比,该方法时 相似文献
7.
为降低集成特征选择方法的计算复杂性,提出了一种基于粗糙集约简的神经网络集成分类方法。该方法首先通过结合遗传算法求约简和重采样技术的动态约简技术,获得稳定的、泛化能力较强的属性约简集;然后,基于不同约简设计BP网络作为待集成的基分类器,并依据选择性集成思想,通过一定的搜索策略,找到具有最佳泛化性能的集成网络;最后通过多数投票法实现神经网络集成分类。该方法在某地区Landsat 7波段遥感图像的分类实验中得到了验证,由于通过粗糙集约简,过滤掉了大量分类性能欠佳的特征子集,和传统的集成特征选择方法相比,该方法时间开销少,计算复杂性低,具有满意的分类性能。 相似文献
8.
多分类器系统是近年来兴起的一种有效的分类机制,为提高多分类器系统的分类精度,提出了一种基于粗糙集约简构造多分类器系统的机制,并从输入和输出两个角度对如何选择单个分类器进行了探讨。通过对4个UCI数据集进行验证,发现基于输出的选择融合方法得到了最好的分类效果。 相似文献
9.
针对现有邻域粗糙集模型中存在属性权重都相同,无法保证关键属性在属性约简时能够被保留的问题,提出了一种基于信息熵加权的属性约简算法。首先,采用了类间熵、类内熵策略,以最大化类间熵最小化类内熵为原则给属性赋予权重;其次,构造了基于加权邻域关系的加权邻域粗糙集模型;最后,基于依赖关系评估属性子集的重要性,从而实现属性约简。在基于UCI数据集上与其他三种属性约简算法进行对比实验,结果表明,该算法能够有效去除冗余,提高分类精度。 相似文献
10.
随着粗糙集理论的应用越来越广泛,寻找一个适当的方法进行粗糙集约简已成为一个关键问题,同时这也成为研究粗糙集理论的瓶颈。粒子群优化算法(PSO)起源对简单社会系统的模拟,对解决这个问题具有特别的优势。同时该文用遗传算法(GA)来评价提出来的粒子群优化的成效,结果发现,在解决某些粗糙集约简问题上,PSO更具优势。 相似文献
11.
自动文本分类的效果在很大程度上依赖于属性特征的选择。针对传统基于频率阈值过滤的特征选择方法会导致有效信息丢失,影响分类精度的不足,提出了一种基于粗糙集的文本自动分类算法。该方法对加权后的特征属性进行离散化,建立一个决策表;根据基于依赖度的属性重要度对决策表中条件属性进行适当的筛选;采用基于条件信息熵的启发式算法实现文本属性特征的约简。实验结果表明,该方法能约简大量冗余的特征属性,在不降低分类精度的同时,提高文本分类的运行效率。 相似文献
12.
属性约简是粗糙集合研究的重要内容之一。为了能够有效地获取决策表中属性最小相对约简,提出了一种基于GA-PSO的属性约简算法。该算法以条件属性对决策属性的支持度为基础,求解核属性,把所有的条件属性(除去核属性)加入粒子群算法的初始种群中,并用遗传算法对不满足适应度条件的粒子进行交叉变异操作。实验结果表明,该算法在加强局部搜索能力的同时保持了该算法全局寻优的特性,能够快速有效地获得最小相对属性集。 相似文献
13.
ZHAO Wen-qing ZHU Yong-li JIANG Bo 《通讯和计算机》2008,5(2):42-45
This paper presents a novel classification approach based on rough set theory and supporter vector machine. Sometimes, there are many attributes for classification samples and it is difficult to carry out classification. In this paper, the attributes of data set are reduction by rough set theory firstly, and then the classification is carried out using support vector machine. Finally, the classification results are obtained through the proposed model. Moreover, the proposed classification model has higher prediction accuracy by comparing with the traditional algorithm Naive Bayes algorithm and reduces the cost of calculation. 相似文献
14.
基于粗糙集理论的属性约简算法 总被引:4,自引:1,他引:4
粗糙集理论是一种新的数据挖掘方法,其主要思想是保持分类能力不变的情况下,通过属性约简,达到发掘知识并简化知识的目的.从大量数据发现知识时,属性约简是一个关键问题.在理解和分析基于粗糙集理论的数据挖掘算法基础上,提出了一个基于属性依赖度的属性约简算法.实验结果表明,该算法能更有效地对决策系统进行约简. 相似文献
15.
16.
采用信息熵的方法来度量粗糙集的模糊性可以在约简之前对粗糙的决策属性进行预处理,从而消除因决策属性的冗余而带来的分类决策的偏差。结合 SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。对该类别的方法进行了改进,并对分类的结果进行了测试。 相似文献
17.
针对模糊信息系统,通过分析R.Jensen所定义近似算子的松散性,构造了一种严格状态下的近似算子,该算子可以保证下近似随信息系统中属性个数的增加而单调递增;在此基础上,对模糊信息系统的相对约简概念进行了定义,应用所定义依赖度提出了一种模糊信息系统的启发式知识约简算法;将该方法应用于目标威胁等级评估信息系统的知识约简,计算结果验证了该方法的有效性。 相似文献
18.
基于改进遗传算法的粗糙集属性约简算法 总被引:1,自引:0,他引:1
属性约简是粗糙集理论研究的主要内容之一,为了能够有效地获取决策表中属性最小约简,在分析属性约简的方法与遗传算法的基础上,将属性重要性度量作为启发式信息引入遗传算法,提出了一种启发式遗传算法.通过构造新的变异算子来引入启发式信息,体现了启发式信息的局部搜索技术,使得算法既保持整体优化特性,又具有较快的收敛速度.实验结果表明,该方法能快速有效地求出决策表的最小约简. 相似文献