共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits. 相似文献
2.
Stauffer PH Keating GN Middleton RS Viswanathan HS Berchtold KA Singh RP Pawar RJ Mancino A 《Environmental science & technology》2011,45(20):8597-8604
Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO? is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO? from coal, transporting it large distances through pipelines, and storing it safely underground. 相似文献
3.
This study presents a medium-pressure CO2 capture process based on hydrate crystallization in the presence of tetrahydrofuran (THF). THF reduces the incipient equilibrium hydrate formation conditions from a CO2/N2 gas mixture. Relevant thermodynamic data at 0.5, 1.0, and 1.5 mol % THF were obtained and reported. In addition, the kinetics of hydrate formation from the CO2/N2/ THF system as well as the CO2 recovery and separation efficiency were also determined experimentally at 273.75 K. The above data were utilized to develop the block flow diagram of the proposed process. The process involves three hydrate stages coupled with a membrane-based gas separation process. The there hydrate stages operate at 2.5 MPa and 273.75 K. This operating pressure is substantially less than the pressure required in the absence of THF and hence the compression costs are reduced from 75 to 53% of the power produced for a typical 500 MW power plant. 相似文献
4.
We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs. 相似文献
5.
This paper presents a linear programming (LP) methodology for estimating the cost of reducing a state's coal-fired power plant carbon dioxide emissions by cofiring switchgrass and coal. LP modeling allows interplay between regionally specific switchgrass production forecasts, coal plant locations, and individual coal plant historic performance data to determine an allocation of switchgrass minimizing cost or maximizing carbon reduction. The LP methodology is applied to two states, Pennsylvania (PA) and Iowa (IA), and results are presented with a discussion of modeling assumptions, techniques, and carbon mitigation policy implications. The LP methodology estimates that, in PA, 4.9 million tons of CO2/year could be mitigated at an average cost of less than $34/ton of CO2 and that, in IA, 7 million tons of CO2/year could be mitigated at an average Cost of Mitigation of $27/ton of CO2. Because the factors determining the cofiring costs vary so much between the two states, results suggest that cofiring costs will also vary considerably between different U.S. regions. A national level analysis could suggest a lowest-cost cofiring region. This paper presents techniques and assumptions that can simplify biomass energy policy analysis with little effect on analysis conclusions. 相似文献
6.
Coal-fired power plants are large water consumers. Water consumption in thermoelectric generation is strongly associated with evaporation losses and makeup streams on cooling and contaminant removal systems. Thus, minimization of water consumption requires optimal operating conditions and parameters, while fulfilling the environmental constraints. Several uncertainties affect the operation of the plants, and this work studies those associated with weather. Air conditions (temperature and humidity) were included as uncertain factors for pulverized coal (PC) power plants. Optimization under uncertainty for these large-scale complex processes with black-box models cannot be solved with conventional stochastic programming algorithms because of the large computational expense. Employment of the novel better optimization of nonlinear uncertain systems (BONUS) algorithm, dramatically decreased the computational requirements of the stochastic optimization. Operating conditions including reactor temperatures and pressures; reactant ratios and conditions; and steam flow rates and conditions were calculated to obtain the minimum water consumption under the above-mentioned uncertainties. Reductions of up to 6.3% in water consumption were obtained for the fall season when process variables were set to optimal values. Additionally, the proposed methodology allowed the analysis of other performance parameters like gas emissions and cycle efficiency which were also improved. 相似文献
7.
Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments. 相似文献
8.
Carley SR Krause RM Warren DC Rupp JA Graham JD 《Environmental science & technology》2012,46(13):7086-7093
While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS. 相似文献
9.
Cooney CM 《Environmental science & technology》2001,35(15):315A-316A
10.
Reynolds AJ Verheyen TV Adeloju SB Meuleman E Feron P 《Environmental science & technology》2012,46(7):3643-3654
Chemical absorption with aqueous amine solvents is the most advanced technology for postcombustion capture (PCC) of CO(2) from coal-fired power stations and a number of pilot scale programs are evaluating novel solvents, optimizing energy efficiency, and validating engineering models. This review demonstrates that the development of commercial scale PCC also requires effective solvent management guidelines to ensure minimization of potential technical and environmental risks. Furthermore, the review reveals that while solvent degradation has been identified as a key source of solvent consumption in laboratory scale studies, it has not been validated at pilot scale. Yet this is crucial as solvent degradation products, such as organic acids, can increase corrosivity and reduce the CO(2) absorption capacity of the solvent. It also highlights the need for the development of corrosion and solvent reclamation technologies, as well as strategies to minimize emissions of solvent and degradation products, such as ammonia, aldehydes, nitrosamines and nitramines, to the atmosphere from commercial scale PCC. Inevitably, responsible management of aqueous and solid waste will require more serious consideration. This will ultimately require effective waste management practices validated at pilot scale to minimize the likelihood of adverse human and environmental impacts from commercial scale PCC. 相似文献
11.
Xu Y 《Environmental science & technology》2011,45(2):380-385
China has deployed the world's largest fleet of sulfur dioxide (SO(2)) scrubbers (flue gas desulfurization systems), and most of them now appear to be operating properly. Although many plant managers avoided using their SO(2) scrubbers in the past, recent evidence, based on a series of field interviews conducted by the author, suggests that managers of coal power plants now have incentives to operate their scrubbers properly. China's new policy incentives since 2007 appear well designed to overcome the hurdle of high operation and maintenance costs of SO(2) scrubbers. Furthermore, it is now far more likely that offenders will be caught and punished. Continuous emission monitoring systems have played a key role in this change of attitudes. Plant inspections have become much more common, facilitated by a significant increase in the number of inspectors and the fact that the 461,000-megawatt SO(2) scrubbers at the end of 2009 were located in only 503 coal power plants, making frequent inspections little constrained by the shortage of inspectors. Because SO(2) is the precursor of sulfate particles believed to cause significant cooling effects on climate, China's SO(2) mitigation may make it more urgent to control the world's greenhouse gas emissions. 相似文献
12.
13.
Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China 总被引:3,自引:0,他引:3
China is the largest mercury emitter in the world and coal combustion is the most important mercury source in China. This paper updates the coal quality database of China and evaluates the mercury removal efficiency of air pollution control devices (APCDs) based on 112 on-site measurements. A submodel was developed to address the relationship of mercury emission factor to the chlorine content of coal. The mercury emissions from coal-fired power plants (CFPPs) in China were estimated using deterministic mercury emission factor model, nonchlorine-based and chlorine-based probabilistic emission factor models, respectively. The national mercury emission from CFPPs in 2008 was calculated to be 113.3 t using the deterministic model. The nonchlorine-based probabilistic emission factor model, which addresses the log-normal distribution of the mercury content of coal, estimates that the mercury emission from CFPPs is 96.5 t (P50), with a confidence interval of 57.3 t (P10) to 183.0 t (P90). The best estimate by the chlorine-based probabilistic emission factor model is 102.5 t, with a confidence interval of 71.7 to 162.1 t. The chlorine-based model addresses the influence of chlorine and reduces the uncertainties of mercury emission estimates. 相似文献
14.
The Electric Power Research Institute (EPRI) undertook a multiyear effort to understand the landscape of postcombustion CO? capture technologies globally. In this paper we discuss several central issues facing CO? capture involving scale, energy, and overall status of development. We argue that the scale of CO? emissions is sufficiently large to place inherent limits on the types of capture processes that could be deployed broadly. We also discuss the minimum energy usage in terms of a parasitic load on a power plant. Finally, we present summary findings of the landscape of capture technologies using an index of technology readiness levels. 相似文献
15.
16.
17.
Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth 总被引:5,自引:0,他引:5
Adsorption with regeneration is a desirable means to control the emissions of organic vapors such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from air streams as it allows for capture, recovery, and reuse of those VOCs/HAPS. Integration of activated-carbon fiber-cloth (ACFC) adsorbent with microwave regeneration provides promise as a new adsorption/ regeneration technology. This research investigates the feasibility of using microwaves to regenerate ACFC as part of a process for capture and recovery of organic vapors from gas streams. A bench-scale fixed-bed microwave-swing adsorption (MSA) system was built and tested for adsorption of water vapor, methyl ethyl ketone (MEK), and tetrachloroethylene (PERC) from an airstream and then recovery of those vapors with microwave regeneration. The electromagnetic heating behavior of dry and vapor-saturated ACFC was also characterized. The MSA system successfully adsorbed organic vapors from the airstreams, allowed for rapid regeneration of the ACFC cartridge, and recovered the water and organic vapors as liquids. 相似文献
18.
Anoxic gas-packaging of fresh beef was developed using a catalytic oxygen-scavenging system. Retail cuts of fresh beef do not discolour during storage periods of up to 3 weeks at 0°C in this system. The colour shelf-life of different muscles, subsequent to anoxic gas-packaging, are related to their intrinsic colour stabilities. Colour shelf-life decreases with length of storage period in the anoxic gas atmosphere. No differences in subsequent colour shelf-life are found between meat stored in anoxic gas atmospheres of nitrogen or of carbon dioxide for up to 3 weeks at 0°C. 相似文献
19.
20.
Wong-Parodi G Dowlatabadi H McDaniels T Ray I 《Environmental science & technology》2011,45(16):6743-6751
Carbon capture and sequestration (CCS), while controversial, is seen as promising because it will allow the United States to continue using its vast fossil fuel resources in a carbon-constrained world. The public is an important stakeholder in the national debate about whether or not the U.S. should include CCS as a significant part of its climate change strategy. Understanding how to effectively engage with the public about CCS has become important in recent years, as interest in the technology has intensified. We argue that engagement efforts should be focused on places where CCS will first be deployed, i.e., places with many "energy veteran" (EV) citizens. We also argue that, in addition to information on CCS, messages with emotional appeal may be necessary in order to engage the public. In this paper we take a citizen-guided social marketing approach toward understanding how to (positively or negatively) influence EV citizens' attitudes toward CCS. We develop open-ended interview protocols, and a "CCS campaign activity", for Wyoming residents from Gillette and Rock Springs. We conclude that our participants believed expert-informed CCS messages, embedded within an emotionally self-referent (ESR) framework that was relevant to Wyoming, to be more persuasive than the expert messages alone. The appeal to core values of Wyomingites played a significant role in the citizen-guided CCS messages. 相似文献