首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel lead-free bumping technique using an alternating electromagnetic field (AEF) was investigated. Lead-free solder bumps reflowed onto copper pads through AEF have been achieved. A comparison was conducted between the microstructures of the lead-free solder joints formed by the conventional thermal reflow and AEF reflow. Keeping the substrate temperature lower than that of the solder bumps, AEF reflow successfully created metallurgical bonding between the lead-free solders and metallizations through an interfacial intermetallic compound (IMC). The AEF reflow could be finished in several seconds, much faster than the conventional hot-air reflow. Considering the morphology of the interfacial Cu6Sn5 IMC, a shorter heating time above the melting point would be a better choice for solder joint reliability. The results show that AEF reflow is a promising localized heating soldering technique in electronic packaging.  相似文献   

2.
While extensive research on the lead-free solder has been conducted, the high melting temperature of the lead-free solder has detrimental effects on the packages. Thermosonic bonding between metal bumps and lead-free solder using the longitudinal ultrasonic is investigated through numerical analysis and experiments for low-temperature soldering. The results of numerical calculation and measured viscoelastic properties show that a substantial amount of heat is generated in the solder bump due to viscoelastic heating. When the Au bump is thermosonically bonded to the lead-free solder bump (Sn-3%Ag-0.5%Cu), the entire Au bump is dissolved rapidly into the solder within 1 sec, which is caused by the scrubbing action of the ultrasonic. More reliable solder joints are obtained using the Cu/Ni/Au bump, which can be applied to flip-chip bonding.  相似文献   

3.
在用回流焊料凸点时,常会发生凸点的桥接现象,致使芯片报废。此时,相邻的多个凸点彼此融合,聚集成一个更大的焊料球,并吸干先前各凸点中的焊料。本文研究了电镀PbSn凸点和蒸发铟凸点的回流过程中出现的桥接现象。介绍了桥接现象产生的过程及其背景,分析了桥接现象的机理,提出了改进措施。  相似文献   

4.
Flip chip technology has been extensively used in high density electronic packaging over the past decades. With the decrease of solder bumps in dimension and pitch, defect inspection of solder bumps becomes more and more challenging. In this paper, an intelligent diagnosis system using the scanning acoustic microscopy (SAM) is investigated, and the fuzzy support vector machine (F-SVM) algorithm is developed for solder bump recognition. In the F-SVM algorithm, we apply a fuzzy membership to input feature data so that the different input features can make different contributions to the learning procedure of the network. It solves the problem of feature data aliasing in the traditional SVM. The SAM image of flip chip is captured by using an ultrasonic transducer of 230 MHz. Then the segmentation of solder bumps is based on the gradient matrix of the original image, and the statistical features corresponding to every solder bump are extracted and adopted to the F-SVM network for solder bump classification and recognition. The experiment results show a high accuracy of solder defect recognition, therefore, the diagnosis system using the F-SVM algorithm is effective and feasible for solder bump defect inspection.  相似文献   

5.
A novel three-dimensional packaging method for Al-metalized SiC power devices has been developed by means of Au stud bumping technology and a subsequent vacuum reflow soldering process with Au-20Sn solder paste. Al-metalized electrodes of a SiC power chip can be robustly assembled to a direct bonded copper (DBC) substrate with this method. The bump shear strength of a Au stud bump on an Al electrode of a SiC chip increased with bonding temperature. The die shear strength of a SiC chip on the DBC substrate increased with the number of Au stud bumps which were preformed on the Al electrode. The bonded SiC-SBD chips on a DBC substrate were aged at 250 ${^circ}{rm C}$ in a vacuum furnace and the morphologies, die shear strength and electrical properties were investigated after a certain aging time. After 1000 h aging at 250 ${^circ}{rm C}$, the electrical resistance of the bonded SiC-SBD chips only increased about 0.4%, the residual die shear strength was much higher than that of the IEC749 (or JEITA) standard value, and little morphological change was observed by a micro-focus X-ray TV system. Very little diffusion between Au stud bumps and Au-20Sn solder was observed by scanning electron microscope (SEM) equipped with an energy dispersed X-ray analyzer (EDX). Intermetallic compounds (IMC) evolved at the interface of chip/solder and chip/Au stud bumps after 1000 h aging at 250 ${^circ}{rm C}$. With this method, power devices with Al bond pads can be three-dimensionally packaged.   相似文献   

6.
无焊剂软钎焊技术因其焊接过程中无焊剂残留,被广泛应用于光电器件和芯片倒装焊等方面。首先对无焊剂软钎焊的原理和工艺进行了阐述,并指出气氛保护和等离子处理是无焊剂软钎焊的两个主要技术途径。基于上述分析,采用无焊剂软钎焊工艺开展钎料润湿性研究。结果表明,还原气氛保护和等离子处理后,焊料的润湿铺展性能显著提高。  相似文献   

7.
涂文彬  周光雄 《电子科技》2013,26(10):91-94
研制开发熔点在260 ℃以上的高温无铅钎料来代替传统的高铅钎料运用于电子封装一直是钎焊领域的一大难题。熔点约为272 ℃的Bi-2.6 Ag-5 Sb钎料合金因润湿性和焊接可靠性不良在运用上受到限制。文中通过在Bi-2.6 Ag-5 Sb钎料合金中添加微量元素Cu来改善B-i2.6 Ag-5 Sb合金的润湿性及焊接可靠性。研究结果表明,Cu含量对BiAgSbCu系钎料合金熔点影响较小,当Cu含量为2 %时,润湿性及焊接可靠性最佳。  相似文献   

8.
The reliability of electroless Ni(P) under-bump metallization (UBM) was evaluated via temperature cycling and solder bump shear strength tests. Commercial diodes and dummy dies fabricated in-house were used as substrates for the electroless Ni(P) UBM deposition. Solder bumps were formed after reflowing eutectic 63Sn37Pb solder foils over the Ni(P) UBM. The solder bump shear strength was measured before and after different temperature cycling. The results from this study showed that the UBM thickness and dimension had important effects on the solder bump shear strength and reliability. Both the larger UBM dimension and larger UBM thickness tended to induce higher stress in the UBM, which resulted in the lower solder bump shear strength and lower temperature cycling reliability. A better UBM structure solution for high current electronic packaging application is indicated in this paper  相似文献   

9.
The eutectic gold–tin (AuSn) solder composition is receiving increased attention for packaging applications. In addition to the environmental benefits of removing lead compounds from electronic manufacturing, gold–tin eutectic also exhibits desirable mechanical properties such as high strength and low thermal fatigue. However, some methods of deposition for this solder require complicated processes or limit the minimum bump size. This paper explores the formation of AuSn eutectic solder bumps using sequential electrodeposition of Au and Sn to determine the effect of layer thickness and sequence on the composition and structure of the resulting solder bump.  相似文献   

10.
This paper reports a novel method to enhance solder ball or solder ring bonding strength by using electrowetting-on-dielectric (EWOD) effect. With a low melting point, the metal Sn has been widely used in electronic packaging technology. Since Sn will be molten into liquid when the temperature is increased above the melting point, the method for treating liquid can be herein employed. Contact angle of the molten Pb-free balls or ring structure on silicon substrate have been experimentally changed by applying electric field across the thin dielectric film between the molten solder and the conductive silicon substrate. The contact area between the solder and the substrate is enlarged due to the decrease of the contact angle. Our testing results on the EWOD enhanced packaging structures of solder balls, flip-chip and solder ring hermetic package generally show about 50% enhancement in bonding shear strength. The significantly enhanced solder link bonding strength is hopeful for improving packaging reliability and is promising to be used in high performance silicon based electronic or microelectromechanic SiP (system in package) technologies.  相似文献   

11.
Micro solder bump has been widely used in electronic packaging. Currently a number of flip-chip products are developing towards miniaturization with more I/Os at finer pitch, and defect inspection of the high density package is increasingly challenging. In this paper, the Levenberg-Marquardt back-propagation network (LM-BP) combined with the scanning acoustic microscopy technology was investigated for intelligent diagnosis of solder defect. The flip chips were detected by using a 230 MHz ultrasonic transducer. Solder bumps were segmented from the SAM image. The statistical features were extracted and fed into the LM-BP networks for bump classification. The results demonstrate that LM-BP algorithm reached a high recognition accuracy, and is effective for defect inspection of the micro solder bump.  相似文献   

12.
Precise solder bump shape prediction is crucial for the application of the solder jet bumping process to microelectronic component packaging. In the present study, numerical simulation of both the dynamics and phase change responses during a metal droplet impingement is conducted by introducing a nonconstant interfacial heat transfer coefficient, which varies with time and position. Comparison between the numerical and experimental results for a large metal droplet demonstrates the validity of the numerical method. The results of many simulation cases are presented corresponding to typical solder jet bumping conditions. Variations in the impact velocity, initial droplet size, and droplet temperature and substrate temperature are investigated to understand their impact on the formation of solder bumps.  相似文献   

13.
In order to investigate the fracture behavior of Sn–3.0Ag–0.5Cu solder bump, solder balls with the diameter of 0.76 mm were soldered on Cu pad in this study, then high speed impact test and static shear test of solder bumps were carried out to measure the joint strength of the soldering interface. The effect of isothermal aging on joint strength as well as fracture behavior of solder bumps was investigated, and the composition of the fracture surface was identified by means of EPMA. The results indicate that the fracture is inside the bulk solder in low speed shear test regardless of the aging effect, thus the maximum load reflects the solder strength rather than the interfacial strength. It is also found that under 1 m/s impact loading, the crack initiation position is changed from solder/Cu6Sn5 interface to Cu3Sn/Cu interface after long time isothermal aging, and the fracture occurs inside the bulk solder accompanying with intermetallic compound in both of the as-soldered and aged joints. The thickened multiple IMC layers during isothermal aging account for the degraded impact resistance, and the change of the solder matrix is another factor for reduced impact resistance owing to Sn residue on the fracture surface.  相似文献   

14.
A novel eutectic Pb-free solder bump process, which provides several advantages over conventional solder bump process schemes, has been developed. A thick plating mask can be fabricated for steep wall bumps using a nega-type resist with a thickness of more than 50 μm by single-step spin coating. This improves productivity for mass production. The two-step electroplating is performed using two separate plating reactors for Ag and Sn. The Sn layer is electroplated on the Ag layer. Eutectic Sn-Ag alloy bumps can be easily obtained by annealing the Ag/Sn metal stack. This electroplating process does not need strict control of the Ag to Sn content ratio in alloy plating solutions. The uniformity of the reflowed bump height within a 6-in wafer was less than 10%. The Ag composition range within a 6-in wafer was less than ±0.3 wt.% Ag at the eutectic Sn-Ag alloy, analyzed by ICP spectrometry. SEM observations of the Cu/barrier layer/Sn-Ag solder interface and shear strength measurements of the solder bumps were performed after 5 times reflow at 260°C in N2 ambient. For the Ti(100 nm)/Ni(300 nm)/Pd(50 nm) barrier layer, the shear strength decreased to 70% due to the formation of Sn-Cu intermetallic compounds. Thicker Ti in the barrier metal stack improved the shear strength. The thermal stability of the Cu/barrier layer/Sn-Ag solder metal stack was examined using Auger electron spectrometry analysis. After annealing at 150°C for 1000 h in N2 ambient, Sn did not diffuse into the Cu layer for Ti(500 nm)/Ni(300 nm)/Pd(50 nm) and Nb(360 nm)/Ti(100 nm)/Ni(300 nm)/Pd(50 nm) barrier metal stacks. These results suggest that the Ti/Ni/Pd barrier metal stack available to Sn-Pb solder bumps and Au bumps on Al pads is viable for Sn-Ag solder bumps on Cu pads in upcoming ULSIs  相似文献   

15.
The choice of solder joint metallurgy is a key issue especially for the reliability of flip-chip assemblies. Besides the metallurgical systems already widely used and well understood, new materials are emerging as solderable under bump metallization (UBM). For single chip bumping Pd stud bumps form a solid core under the solder layer. These hard core solder bumps are an adequate solution if single dies are available only and the chosen assembly technology is flip chip soldering. The scope of this paper is to summarize the results from aging of lead/tin solder bumps on palladium. The growth of intermetallic and its impact on the mechanical reliability are investigated.  相似文献   

16.
With the development of optoelectronics and microelectromechanical systems (MEMS) packaging, laser soldering has become an extensively used interconnection technique in electronic manufacturing industry. Postsolder shift in assembling of such components is the most challenging issue to affect the packaging yields. To maintain a high coupling efficiency or accuracy, tight control of postsolder shift is required. In the present work, a 3-D thermal-mechanical coupled finite element model was developed to investigate the time-dependent pitch shift induced by the laser solder ball bonding process. This model accounted for the laser interaction, the heat conduction, the thermal induced deformation and the phase change of the solder and could reflect the actual laser soldering process. The modeling results show different deformation mechanisms in the prebumping and reflow processes. The pitch shift is mainly induced by the thermal shrinkage of solder. The pitch angles obtained from the finite element analysis are in good agreement with those from the measurement using laser goniometer.  相似文献   

17.
《Microelectronics Reliability》2014,54(6-7):1206-1211
With the aim to miniaturize and to reduce the cost, the increasing demand, regarding to advanced 3D-packages as well as high performance applications, accelerates the development of 3D-silicon integrated circuits. The trend to smaller and lighter electronics has highlighted many efforts towards size reduction and increased performance in electronic products. The radio frequency (RF) performances are limited by parasitic effects due to the resistor–inductor–capacitor (RLC) network, between the wire bond connections from the dies to the lead frame. The use of flip-chip bonding technology for very fine pitch packaging allows high integration and limits parasitic inductances. Electromigration (EM) and thermomigration (TM) may have serious reliability issues for fine-pitch Pb-free solder bumps in the flip-chip technology used in consumer electronic products. A possibility to extend the reliability is the use of plastic ball in the solder bumps. Bumps containing a plastic solder balls have an excellent reliability. Using a plastic ball with a low Young modulus, the solder hardness is moderated and the stress on a ball is relaxed. Due to this, the stress does not concentrate on the solder joint which prolongs the lifetime. In this investigation, the thermal–electrical–mechanical coupling of electromigration on bumps containing a plastic solder is studied.  相似文献   

18.
Due to today’s trend towards ‘green’ products, the environmentally conscious manufacturers are moving toward lead-free schemes for electronic devices and components. Nowadays the bumping process has become a branch of the infrastructure of flip chip bonding technology. However, the formation of excessively brittle intermetallic compound (IMC) between under bump metallurgy (UBM)/solder bump interface influences the strength of solder bumps within flip chips, and may create a package reliability issue. Based on the above reason, this study investigated the mechanical behavior of lead-free solder bumps affected by the solder/UBM IMC formation in the duration of isothermal aging. To attain the objective, the test vehicles of Sn–Ag (lead-free) and Sn–Pb solder bump systems designed in different solder volumes as well as UBM diameters were used to experimentally characterize their mechanical behavior. It is worth to mention that, to study the IMC growth mechanism and the mechanical behavior of a electroplated solder bump on a Ti/Cu/Ni UBM layer fabricated on a copper chip, the test vehicles are composed of, from bottom to top, a copper metal pad on silicon substrate, a Ti/Cu/Ni UBM layer and electroplated solder bumps. By way of metallurgical microscope and scanning-electron-microscope (SEM) observation, the interfacial microstructure of test vehicles was measured and analyzed. In addition, a bump shear test was utilized to determine the strength of solder bumps. Different shear displacement rates were selected to study the time-dependent failure mechanism of the solder bumps. The results indicated that after isothermal aging treatment at 150 °C for over 1000 h, the Sn–Ag solder revealed a better maintenance of bump strength than that of the Sn–Pb solder, and the Sn–Pb solder showed a higher IMC growth rate than that of Sn–Ag solder. In addition, it was concluded that the test vehicles of copper chip with the selected Ti/Cu/Ni UBMs showed good bump strength in both the Sn–Ag and Sn–Pb systems as the IMC grows. Furthermore, the study of shear displacement rate effect on the solder bump strength indicates that the analysis of bump strength versus thermal aging time should be identified as a qualitative analysis for solder bump strength determination rather than a quantitative one. In terms of the solder bump volume and the UBM size effects, neither the Sn–Ag nor the Sn–Pb solders showed any significant effect on the IMC growth rate.  相似文献   

19.
肖启明  汪辉 《半导体技术》2010,35(12):1190-1193,1212
焊球植球是一种最具潜力的低成本倒装芯片凸块制作工艺.采用焊球植球工艺制作的晶圆级芯片尺寸封装芯片的凸块与芯片表面连接的可靠性问题是此类封装技术研究的重点.为此,参考JEDEC关于电子封装相关标准,建立了检验由焊球植球工艺生产的晶圆级芯片尺寸封装芯片凸块与芯片连接及凸块本身是否可靠的可靠性测试方法与判断标准.由焊球植球工艺生产的晶圆级芯片尺寸封装芯片,分别采用高温存储、热循环和多次回流进行试验,然后利用扫描电子显微镜检查芯片上凸块剖面的凸块下金属层分布和测试凸块推力大小来验证凸块的可靠性.试验数据表明焊球植球工艺生产的晶圆级芯片尺寸封装芯片具有高的封装连接可靠性.  相似文献   

20.
Current techniques for nondestructive quality evaluation of solder bumps in electronic packages are either incapable of detecting solder bump cracks, or unsuitable for in-line inspection due to high cost and low throughput. As an alternative, a solder bump inspection system is being developed at Georgia Institute of Technology using laser ultrasound and interferometric techniques . This system uses a pulsed Nd:YAG laser to induce ultrasound in electronic packages in the thermoelastic regime; it then measures the transient out-of-plane displacement responses on the package surfaces using laser interferometric technique. The quality of solder bumps in electronic packages is evaluated by analyzing the transient responses. This paper presents a systematic study on thermomechanical reliability of flip chip solder bumps using laser ultrasound–interferometric inspection technique and finite element (FE) method. The correlation between the failure parameter extracted from FE simulation for evaluating solder bump reliability and quality degradation characterization of solder bumps through noncontact, nondestructive laser ultrasound testing has also been investigated.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号