首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 875 毫秒
1.
针对SMOTE(Synthetic Minority Over-sampling Technique)等传统过采样算法存在的忽略类内不平衡、扩展少数类的分类区域以及合成的新样本高度相似等问题,基于综合考虑类内不平衡和合成样本多样性的思想,提出了一种整合DBSCAN和改进SMOTE的过采样算法DB-MCSMOTE(DBSCAN and Midpoint Centroid Synthetic Minority Over-sampling Technique)。该算法对少数类样本进行DBSCAN聚类,根据提出的簇密度分布函数,计算各个簇的簇密度和采样权重,在各个簇中利用改进的SMOTE算法(MCSMOTE)在相距较远的少数类样本点之间的连线上进行过采样,提高合成样本的多样性,得到新的类间和类内综合平衡数据集。通过对一个二维合成数据集和九个UCI数据集的实验表明,DB-MCSMOTE可以有效提高分类器对少数类样本和整体数据集的分类性能。  相似文献   

2.
为解决软件缺陷预测中的不平衡问题,提出一种基于聚类少数类的改进SMOTE算法。对训练集中的少数类样本进行K-means聚类后,通过关键特征权重及与簇心距离权重,计算每个样本的合成样本数量,采用改进的SMOTE算法实现过抽样。采用CART决策树作为基分类器,使用AdaBoost算法对平衡数据集训练,得到分类模型CSMOTE-AdaBoost。在7组NASA数据集上进行实验,验证分类模型中关键特征权重及与簇心距离权重的有效性,其结果优于传统分类算法,具有更好的分类效果。  相似文献   

3.
崔鑫  徐华  宿晨 《计算机应用》2020,40(6):1662-1667
合成少数类过抽样技术(SMOTE)中的噪声样本可能参与合成新样本,所以难以保证新样本的合理性。针对这个问题,结合聚类算法提出了改进算法CSMOTE。该算法抛弃了SMOTE在最近邻间线性插值的思想,使用少数类的簇心与其对应簇中的样本进行线性插值合成新样本,并且对参与合成的样本进行了筛选,降低了噪声样本参与合成的可能。在六个实际数据集上,将CSMOTE算法与四个SMOTE的改进算法以及两种欠抽样算法进行了多次的对比实验,CSMOTE算法在所有数据集上均获得了最高的AUC值。实验结果表明,CSMOTE算法具有更高的分类性能,可以有效解决数据集中样本分布不均衡的问题。  相似文献   

4.
针对合成少数类过采样技术等基于近邻值的过采样算法在处理数据类不平衡时,不能根据少数类样本分布情况及时调整模型参数,导致过采样后的数据集引入噪声,并且在原始分布区域上无差别地合成少数类实例造成过拟合等问题,提出了一种特征边界和密度适应的SMOTE算法(SMOTE algorithm for feature boundary and density adaptation)BDA-SMOTE。该算法为每一个少数类样本规划安全区域,增加少数类的分布,同时基于数据的分布密度动态地调整模型参数,确保生成的数据具有明显的特征边界,防止过拟合。在公开数据集KEEL上与常用的SMOTE算法进行实验对比,结果BDA-SMOTE的性能优于其他基于近邻SMOTE算法。表明该算法较好地扩展了原数据集的分布,同时合成的噪声样本更少。  相似文献   

5.
针对SMOTE方法对所有少数类样本进行过采样的缺陷,提出一种基于特征加权与聚类融合的过采样方法(WKMeans-SMOTE),由此进行不平衡数据分类。考虑到不同特征权重对聚类结果的影响程度不同,选择特征加权的聚类算法对原始数据集进行聚类,并多次改变初始簇中心生成不同的聚类结果;根据簇标签匹配方法将不同的聚类结果进行匹配,引进“聚类一致性系数”筛选出处于少数类边界的样本;对筛选出的少数类样本进行SMOTE过采样,并采用CART决策树方法作为基分类器,对新的少数类样本与所有的多数类样本进行训练。实验结果表明,与现有的SMOTE、Borderline-SMOTE和ADASYN等过采样方法相比,所提出的WKMeans-SMOTE方法在分类性能上有一定的提升。  相似文献   

6.
针对分类任务中的不平衡数据集造成的分类性能低下的问题,提出了类不平衡数据的EM聚类过采样算法,通过过采样提高少数类样本数量,从根本上解决数据不平衡问题。首先,算法采用聚类技术,通过欧式距离衡量样本间的相似度,选取每个聚类簇的中心点作为过采样点,一定程度解决了样本的重要程度不够的问题;其次,通过直接在少数类样本空间上进行采样,可较好解决SMOTE、Cluster-SMOTE等方法对聚类空间没有针对性的问题;同时,通过对少数类样本数量的30%进行过采样,有效解决基于Cluster聚类的欠采样盲目追求两类样本数量平衡和SMOTE等算法没有明确采样率的问题。在公开的24个类不平衡数据集上进行了实验,验证了方法的有效性。  相似文献   

7.
胡小生  张润晶  钟勇 《计算机科学》2013,40(11):271-275
类别不平衡数据分类是机器学习和数据挖掘研究的热点问题。传统分类算法有很大的偏向性,少数类分类效果不够理想。提出一种两层聚类的类别不平衡数据级联挖掘算法。算法首先进行基于聚类的欠采样,在多数类样本上进行聚类,之后提取聚类质心,获得与少数类样本数目相一致的聚类质心,再与所有少数类样例一起组成新的平衡训练集,为了避免少数类样本数量过少而使训练集过小导致分类精度下降的问题,使用SMOTE过采样结合聚类欠采样;然后在平衡的训练集上使用K均值聚类与C4.5决策树算法相级联的分类方法,通过K均值聚类将训练样例划分为K个簇,在每个聚类簇内使用C4.5算法构建决策树,通过K个聚簇上的决策树来改进优化分类决策边界。实验结果表明,该算法具有处理类别不平衡数据分类问题的优势。  相似文献   

8.
针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(KNN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目,对样本集中的噪声样本进行精确识别并予以滤除;其次,在过采样过程中基于聚类的思想将样本集划分为不同的子簇,根据子簇的簇心及其所包含的样本数目,在簇内样本与簇心之间进行新样本的合成操作。在样本合成过程中充分考虑类间和类内数据不平衡性,对样本及时修正以保证合成样本质量,平衡样本信息;最后,利用AdaBoost算法的优势,采用决策树作为基分类器,对平衡后的样本集进行训练,迭代多次直到满足终止条件,得到最终分类模型。选择G-mean、AUC作为评价指标,通过在6组KEEL数据集进行对比实验。实验结果表明,所提的过采样算法与经典的过采样算法SMOTE、自适应综合过采样技术(ADASYN)相比,G-means和AUC在4组中有3组最高;所提分类模型与现有的不平衡分类模型SMOTE-Boost,CUS-Boost,RUS-Boost相比,6组数据中:G-means均高于CUS-Boost和RUS-Boost,有3组低于SMOTE-Boost;AUC均高于SMOTE-Boost和RUS-Boost,有1组低于CUS-Boost。验证了所提的KSMOTE-AdaBoost具有更好的分类效果,且模型泛化性能更高。  相似文献   

9.
不平衡数据分类问题是数据挖掘领域的关键挑战之一。过抽样方法是解决不平衡分类问题的一种有效手段。传统过抽样方法没有考虑类内不平衡,为此提出基于改进谱聚类的过抽样方法。该方法首先自动确定聚类簇数,并对少数类样本进行谱聚类,再根据各类内包含样本数与总少数类样本数之比,确定在类内合成的样本数量,最后通过在类内进行过抽样,获得平衡的新数据集。在4个实际数据集上验证了算法的有效性。并在二维合成数据集上对比k均值聚类和改进谱聚类的结果,解释基于两种不同聚类的过抽样算法性能差异的原因。  相似文献   

10.
传统的分类算法在对不平衡数据进行分类时,容易导致少数类被错分。为了提高少数类样本的分类准确度,提出了一种基于改进密度峰值聚类的采样算法IDP-SMOTE。首先,采用Box-Cox变换和σ准则对密度峰值聚类算法进行改进,实现了聚类中心和离群点的自动判别;然后,将改进的密度峰值聚类算法与SMOTE升采样算法相结合,去除噪声数据,并基于少数类样本的局部密度和邻近距离,在子类的范围内合成采样数据。该算法有效避免了升采样导致的边界模糊,改善了类内不平衡及边界样本难以学习的问题,同时实现了自动聚类和重采样,防止了人为因素干扰。通过实验对比,验证了提出算法的有效性和自适应性。  相似文献   

11.
王莉  陈红梅 《计算机科学》2018,45(9):260-265
SMOTE(Synthetic Minority Over-sampling TEchnique)在进行样本合成时只在少数类中求其K近邻,这会导致过采样之后少数类样本的密集程度不变的问题。鉴于此,提出一种新的过采样算法NKSMOTE(New Kernel Synthetic Minority Over-Sampling Technique)。该算法首先利用一个非线性映射函数将样本映射到一个高维的核空间,然后在核空间上计算少数类样本在所有样本中的K个近邻,最后根据少数类样本的分布对算法分类性能的影响程度赋予少数类样本不同的向上采样倍率,从而改变数据集的非平衡度。实验采用决策树(Decision Tree,DT)、误差逆传播算法(error BackPropagation,BP)、随机森林(Random Forest,RF)作为分类算法,并将几类经典的过采样方法和文中提出的过采样方法进行多组对比实验。在UCI数据集上的实验结果表明,NKSMOTE算法具有更好的分类性能。  相似文献   

12.
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。  相似文献   

13.
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行[K]-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。  相似文献   

14.
针对少数类样本合成过采样技术(Synthetic Minority Over-Sampling Technique, SMOTE)在合成少数类新样本时会带来噪音问题,提出了一种改进降噪自编码神经网络不平衡数据分类算法(SMOTE-SDAE)。该算法首先通过SMOTE方法合成少数类新样本以均衡原始数据集,考虑到合成样本过程中会产生噪音的影响,利用降噪自编码神经网络算法的逐层无监督降噪学习和有监督微调过程,有效实现对过采样数据集的降噪处理与数据分类。在UCI不平衡数据集上实验结果表明,相比传统SVM算法,该算法显著提高了不平衡数据集中少数类的分类精度。  相似文献   

15.
现有的大多数过采样算法在采样过程中只考虑少数类样本的分布而忽略多数类样本的分布,且数据集除了存在类间不平衡问题之外,还存在类内不平衡问题。针对这些问题,提出一种基于密度峰值聚类和径向基函数的过采样方法。该方法首先利用改进的密度峰值聚类算法自适应地为少数类聚类,获得多个子簇;利用聚类过程计算所得的局部密度为各子簇分配权重,并根据权重确定各子簇的过采样量;用径向基函数计算少数类样本的相互类势,以相互类势为依据对少数类进行过采样。将算法与不同分类器结合进行实验,用不同指标评价分类效果,实验表明,该算法的分类效果较优。  相似文献   

16.
针对SMOTE(synthetic minority over-sampling technique)等基于近邻值的传统过采样算法在处理类不平衡数据时近邻参数不能根据少数类样本的分布及时调整的问题,提出邻域自适应SMOTE算法AdaN_SMOTE.为使合成数据保留少数类的原始分布,跟踪精度下降点确定每个少数类数据的近邻值,并根据噪声、小析取项或复杂的形状及时调整近邻值的大小;合成数据保留了少数类的原始分布,算法分类性能更佳.在KE E L数据集上进行实验对比验证,结果表明AdaN_SMOTE分类性能优于其他基于近邻值的过采样方法,且在有噪声的数据集中更有效.  相似文献   

17.
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号