首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用直流热阴极PCVD方法间歇生长模式,在CH4-H2气氛常规制备微米晶金刚石膜的参数条件下,利用人工干预二次形核工艺,研究了间歇周期变化对制备纳米晶金刚石膜的影响.人工干预二次形核是指通过生长温度的周期性改变而诱发二次形核行为,从而实现金刚石膜的纳米晶生长.金刚石膜周期性生长过程分为沉积阶段和干预阶段,沉积阶段主要完成金刚石膜的生长,干预阶段将沉积温度降低到600℃,然后恢复到生长温度,即完成一个生长周期.间歇周期研究主要是考察在不同间歇时间里人工干预诱导二次形核的效果,间歇时间设定为1 min、5 min、10 min、15min、20 min,生长时间设为20 min,总的沉积时间为6 h.采用拉曼光谱仪、SEM和XRD对样品进行了分析,结果表明直流热阴极PCVD方法间歇生长模式,间歇周期的变化,对二次形核的发生有诱导作用,适当选择间歇周期,有利于二次形核基团的生成.  相似文献   

2.
采用直流热阴极PCVD技术,经过生长温度的周期性调整,达到清除多余游离碳和刻蚀非金刚石相的目的,实现了在高甲烷浓度条件下制备纳米金刚石膜.金刚石膜的生长过程分为沉积阶段和刻蚀去除阶段,沉积时间为15min,刻蚀时间为5min,生长周期为20min,总的沉积时间为6h.采用拉曼光谱仪、SEM和XRD分析仪对样品进行了分析,结果显示样品具有纳米金刚石膜的基本特征.研究表明,在高甲烷浓度条件下,直流热阴极PCVD间歇生长模式可有效去除生长腔内的游离碳成分,实现正常放电激励,维持正常生长,制备出纳米金刚石膜.  相似文献   

3.
围绕纳米金刚石膜生长的二次形核理论,利用直流热阴极PCVD技术,在微晶金刚石膜连续生长模式常用的一些生长条件下,通过改变工作气压,改变生长温度,同时采取人工干预间歇生长模式进行金刚石膜生长实验,探索纳米级金刚石膜制备的新途径.实验表明:在金刚石膜生成的过程中,降低工作气压或生长温度,可使等离子体激励能量减弱,导致二次形核基团比例增加,成为人工干预二次形核的内在诱因;通过调节激励电压,使等离子体能量状况改变,有利于二次形核行为的引导,成为人工干预二次形核的外在诱因,在此内外因素共同作用下,可以实现二次形核现象的有效诱导,制备出纳米金刚石膜.人工干预诱导二次形核技术制备纳米金刚石膜的实现,使纳米金刚石膜制作方法得到了扩展,也拓宽了直流热阴极PCVD技术的应用范围.  相似文献   

4.
直流热阴极PCVD法CH_4:N_2:H_2气氛下制备纳米金刚石膜   总被引:1,自引:1,他引:0  
采用直流热阴极等离子体化学气相沉积(PCVD)技术,在CH4:H2中加入N2改变等离子体能量分布状态,提高二次形核比例,制备纳米金刚石膜。在CH4:H2气体中,在不同压力和温度下,改变通入N2的比例,分析直流热阴极等离子体放电下N2对金刚石膜生长的影响。采用拉曼光谱仪、扫描电镜(SEM)和X射线衍射分析仪(XRD)对样品进行了表征,结果表明,直流热阴极PCVD系统中,CH4:N2:H2气氛下,N2流量小于气体总流量的50%时,在6×103 Pa、850℃条件下,制备的金刚石膜样品的晶粒小于100nm、金刚石1332 cm-1特征峰展宽且强度较高、金刚石的XRD衍射峰强度也较高,具备纳米金刚石膜的基本特征。因此,利用直流热阴极PCVD方法,在较低温度和气压下,CH4:H2中加入少量N2,可以制备出纳米金刚石膜。  相似文献   

5.
采用直流热阴极PCVD(Plasma chemical vapor deposition)法间歇生长模式制备金刚石膜,通过加入周期性的刻蚀阶段清除金刚石膜在一定生长期中形成的石墨和非晶碳等杂质,实现了金刚石膜生长的质量调控。间歇式生长过程分为沉积阶段和刻蚀阶段,两个阶段交替进行。采用Raman光谱、SEM和XRD对所制金刚石膜的品质进行了表征,并与同样生长条件下连续生长模式制备的金刚石膜样品进行了比较。结果表明,当单个生长周期为30 min(沉积时间为20 min、刻蚀时间为10 min)时,直流热阴极PCVD法间歇生长模式制备的金刚石膜中的非金刚石相杂质含量低于连续间歇生长模式制备的金刚石膜。  相似文献   

6.
采用直流热阴极等离子体化学气相沉积(直流热阴极PCVD)方法,通过金刚石膜的间歇生长过程,引入氮原子的作用,实现对非金刚石成份的刻蚀和金刚石膜的择优取向生长,在CH4:N2:H2气氛下制备透明金刚石膜。金刚石膜的间歇式生长分为沉积阶段和刻蚀两个阶段,沉积阶段为20 min,刻蚀阶段为1 min,沉积和刻蚀通过温度的调节来实现,总的生长时间10 h;实验中主要改变的参数是N2气比例,将N2气流量与总气体流量的比例分为高、中、低三档分别进行实验。结果在CH4:N2:H2比例为2:20:180时获得了透明金刚石膜。金刚石膜样品用Raman光谱仪、SEM和XRD进行了表征,研究表明,直流热阴极PCVD间歇生长模式下,通过引入氮原子的作用,可以制备出(111)面取向的透明金刚石膜。  相似文献   

7.
采用直流热阴极PCVD方法,以B(OCH3)3作为硼源,通过改变氩气与氢气流量比,在p型Si衬底上沉积了硼掺杂纳米金刚石膜.研究了不同氩气与氢气流最比对掺硼金刚石膜生长的影响.采用扫描电子显微镜、拉曼光谱仪、X射线衍射仪、霍尔系统等对样品的形貌、结构和导电性能进行了表征.结果表明,随着氩气与氢气流量比的增加,膜的晶粒尺寸由微米级向纳米级转变,并且膜中非晶碳成分增多,膜的导电性能变好.  相似文献   

8.
在CH4/H2气氛下,利用直流热阴极PCVD(plasma chemical vapor deposition)设备,在高CH4流量下制备纳米金刚石膜.对制备的样品通过扫描电子显微镜、拉曼光谱仪、X射线衍射仪对其进行表征.结果表明:随着CH4流量的增加,晶粒尺寸明显减小,表面变得更加平滑,但非金刚石相增多,膜的品质下降.同时CH4流量增加,促进了(110)面的生长,当CH4流量达到12 sccm,具有(110)方向的择优取向.  相似文献   

9.
金曾孙 《材料导报》2001,15(2):24-24
随着大功率电子、光电子、微波器件以及超大规模IC技术的飞速发展,急需新的热沉材料,用高导热高绝缘金刚石膜代替目前常用的热沉材料,具有广阔的应用前景和市场容量。现在的问题是建立和发展低成本大尺寸高导热金刚石膜的制备技术,解决与热沉应用相关的关键技术。 几年来,在国家“八六三”计划的支持下,建立和发展了直流热阴极PCVD,EA-CVD和微波PCVD等高质量金刚石膜的制备技术。用直流热阴极PCVD和EA-CVD方法制备出大尺寸高导热金刚石厚膜,沉积尺寸为φ80mm,膜厚最高达到4.2mm,  相似文献   

10.
采用直流热阴极等离子体化学气相沉积(PCVD)技术,通过在CH4/H2的混合反应气源中通入不同流量的N2,合成了掺氮纳米金刚石薄膜。结果表明随着氮气流量的增加,金刚石薄膜表面形貌发生明显变化:晶粒细化,晶界和缺陷有所增多,膜层由尺寸较大微晶颗粒转向纳米级菜花状结构,并且薄膜表面粗糙度相应变小。同时薄膜中非金刚石组份相对逐渐增多。氮气的引入可以促进金刚石二次形核,抑制金刚石大颗粒生长,对薄膜的生长取向、形貌及结构都产生一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号