首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Nd2O3-NdF3-LiF熔盐体系中电导率及钕溶解度的测定   总被引:5,自引:0,他引:5  
研究了Nd2O3-NdF3-LiF熔盐体系中电导率及钕的溶解度,并根据实验数据拟合了回归方程,分析TN度、LiF浓度、Nd2O3浓度对两种物理性质的影响。结果表明,升高温度,提高LiF浓度以及降低Nd2O3浓度可以提高熔盐体系的电导率;而降低温度,降低LiF浓度以及提高Nd2O3浓度可以减少钕在熔盐中的溶解度。所得研究结果可为电解氟盐法生产钕选择合理的电解质成分提供依据。  相似文献   

2.
以碱式碳酸钕(Nd2(C2O4)3·10H2O)为原料,Nd2(C2O4)3·10H2O在空气中热重-热差(TG-DTA)分析结果为依据,采用X射线衍射仪(XRD)、扫描电镜(SEM)和紫外-可见分光光度计(UV-Vis)分别表征了Nd2(C2O4)3·10H2O在空气中热分解产物的物相、形貌和光吸收特性。结果表明,Nd2(C2O4)3·10H2O在空气中的热分解主要分为3个阶段,第一阶段是室温至300℃,Nd2(C2O4)3·10H2O受热失去结晶水变为Nd2(C2O4)3;第二阶段是300~600℃,Nd2(C2O4)3受热分解为中间产物Nd2O2CO3;第三阶段是600~750℃,Nd2O2CO3受热分解为Nd2O3。在950℃时Nd2(C2O4)3·10H2O受热分解并保温15 min获得了Nd2O3纳米颗粒。随着Nd2(C2O4)3·10H2O热分解温度地升高,获得的Nd2O3颗粒越细,对光的吸收能力就越强。特别是Nd2O3纳米颗粒对光的吸收出现了一些较强的吸收峰和较宽的吸收带,可以极大的拓展Nd2O3纳米颗粒的光学特性应用范围。  相似文献   

3.
碱金属氟化物-氟化锆体系是核反应熔盐堆冷却剂和燃料盐载体最具潜力的应用对象.采用Raman光谱法研究了MF-ZrF4(M=Li,Na,K)体系的离子结构,探讨了温度和ZrF4摩尔分数对体系中离子团的形式和相互转化规律的影响.研究表明,MF-ZrF4体系中主要存在ZrF4-8,ZrF3-7,ZrF2-6,ZrF5-四种Zr-F结构,在较高温度时还存在Zr3 F8-20,Zr2 F5-13和Zr2 F3-11络合离子团;随着温度的升高,体系中ZrF3-7离子团的相对含量减少,ZrF4-8,ZrF2-6和ZrF5-离子团的相对含量增加;随着温度的升高或体系中ZrF4摩尔分数的增大,ZrF4-8,ZrF3-7,ZrF2-6,ZrF5-四种络合离子团的结构变得不稳定.  相似文献   

4.
钕电解相关物质理论分解电压的计算   总被引:4,自引:0,他引:4  
刘奎仁  陈建设  魏绪钧 《稀土》2001,22(2):30-33
本文计算了NdF3-LiF-Nd2O3体系各物质的理论分解电压。结果表明,采用惰性阳极,理论分解电压按Nd2O3、NdF3、LiF顺序依次增大,温度升高,理论分解电压降低;采用活性阳极(石墨)时,Nd2O3与石墨反应生成CO和CO2,其理论分解电压较小,反应较易发生,尤以生成CO的反应更易发生。但当电流密度较高或Nd2O3浓度较低时,可能生成碳氧氟化合物及氟碳化合物,并发生阳极效应,各物质的理论分解电压也随温度的升高而降低。  相似文献   

5.
采用方波伏安法,在石墨电极上测定了NdF_3-LiF-Nd_2O_3熔盐体系中氧离子的氧化过程。得出了氧离子氧化峰值电流密度Ip和Nd_2O_3浓度之间的关系曲线,通过最小二乘法建立了如下的方程式:Ip=0.09594[Nd2O3]+0.00497。由该方程式得到的氧化钕浓度(%,质量分数)与X射线荧光光谱(XRF)测试结果比较,平均误差为5.405%。通过方波伏安曲线及该方程式表征了Nd_2O_3在NdF_3-Li F熔盐中的溶解度和溶解速度。Nd_2O_3在NdF_3-Li F熔盐中的溶解是一个吸热过程。随着温度的升高,Nd_2O_3的溶解度呈线性增加,随着Nd F3浓度的增加,Nd_2O_3溶解度也随之增加。温度为1200℃时,当支持电解质中NdF_3浓度从70%(质量分数)增加到90%(质量分数)时,Nd_2O_3溶解度增加1.3%,Nd_2O_3在NdF_3-Li F熔盐中溶解速率在10 min左右达到最大值,该值与电解质组成几乎无关。当NdF_3∶Li F=90∶10(质量比),T=1200℃条件下氧化钕的溶解速度在10~20 min内保持最大值,其值为0.057%·min-1。  相似文献   

6.
为了提高钕熔盐电解的效率,对钕电解的二元体系NdF_3-LiF及三元体系NdF_3-LiF-Nd_2O_3熔盐加热到1100℃、急冷法制备分析样品,同时在电解槽中取熔盐,用急冷法制样,使用DSC-TG测定熔盐在加热过程中重量及热量变化,使用XRD、TEM分析急冷熔盐的样品组成和结构。研究表明,NdF_3-LiF二元体系及NdF_3-LiF-Nd_2O_3三元体系的共熔温度分别为723℃和725℃,共熔相的数量随着LiF的质量而增加,随Nd_2O_3质量增加及Nd_2O_3加入而降低,熔化温度随LiF含量降低而升高,随Nd_2O_3质量增加先降低而后升高,电解槽中熔盐的共融温度及熔化温度在712℃及970℃,实验样品在约900℃开始出现熔盐的挥发,电解槽中的样品几乎没有熔盐挥发;二元系及三元体系样品中分别含有NdF_3、LiF和NdF_3、LiF、Nd OF、NdF_2,三元系样品中加入的Nd_2O_3在高温完全熔解,生成Nd OF、NdF_2,电解槽中的样品含有未熔解的Nd_2O_3。通过实验初步确定了钕电解熔盐随着熔盐成分变化、熔盐熔化温度的变化及Nd_2O_3的熔解状况,确定了电解槽熔盐中存在Nd_2O_3及挥发组分含量偏低,对现场工艺改进及控制具有一定的指导作用。  相似文献   

7.
钕电解阳极过电位的测定   总被引:2,自引:0,他引:2  
用慢扫描示波法测定了钕电解的阳极过电位 .考察了温度、阳极电流密度、Nd2 O3添加量、电解质组成等因素对阳极过电位的影响 ,探讨了降低阳极过电位的可能途径 .结果表明 ,阳极过电位随阳极电流密度的增加而增大 ,随温度的升高而减小 ,一定范围内 ,阳极过电位与阳极电流密度的对数呈线性关系 ,满足塔菲尔方程 ;电解质中LiF和Nd2 O3浓度增加 ,阳极过电位降低 ;适当控制阳极电流密度、升高温度、增加电解质中LiF和Nd2 O3的浓度并尽可能减小极间距 ,均有利于降低阳极过电位  相似文献   

8.
《中国钨业》2014,(3):34-37
NdF3-LiF-Nd2O3体系熔盐电导率是稀土熔盐电解的基础参数,由于高温环境使其在电解过程中的变化规律难以获得。研究针对试验结果所取得的样本进行训练,通过BP神经网络预测了NdF3-LiF-Nd2O3体系熔盐电导率,并分析了温度、LiF浓度和Nd2O3浓度对熔盐电导率的影响。研究结果表明,预测值处在1.825 63.119 7 S/cm之间,与实验值误差在3%左右,同时,预测值与实际值的变化趋势基本一致。研究表明BP神经网络对熔盐电导率的预测能够满足熔盐体系电导率研究的要求。  相似文献   

9.
采用交流阻抗谱技术测定熔盐电阻,并通过CVCC法研究了在1 020~1 120℃的温度范围内NdF3-LiF-Nd2O3熔盐体系的电导率,确定了温度、Nd2O3含量与熔盐电导率之间的关系,分析了温度和Nd2O3含量之间的相互作用以及对熔盐电导率的影响。研究结果表明,温度增加、Nd2O3含量减少,则电导率增大;在温度为1 080℃,Nd2O3含量为1.5%、2%、3.5%时,熔盐电导率变化幅度小,体系较为稳定。  相似文献   

10.
NdF3-LiF-Nd2O3体系粘度的研究   总被引:3,自引:1,他引:2  
采用坩埚扭摆法研究了 Nd F3- L i F熔盐体系的粘度 ,讨论了 Nd F3含量及温度对体系粘度的影响 ,并考察了加入 Nd2 O3对体系粘度的影响。合理地解释了个别组分熔盐粘度出现异常的现象  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号