首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted in dogs to assess n-3 long chain polyunsaturated fatty acid incorporation after feeding an α-linolenic (ALA)-rich flaxseed supplemented diet (FLX) for 84 days. Serum total phospholipids (PL), triacylglycerol (TG), and cholesteryl esters (CE) were isolated at selected times and fatty acid methyl esters were analyzed. Increased LA was seen in the FLX-PL fraction after 28 days and an expected decrease in PL–AA. Enrichment of ALA, eicosapentaenoic acid (EPA) and docosapentaenoic acid n-3 (DPAn-3) in the FLX-group occurred early on (day 4) in both PL and TG fractions but no docosahexaenoic acid (DHA) was found, consistent with data from other species including humans. In contrast, no accumulation of DPAn-3 was seen in serum-CE, suggesting that this fatty acid does not participate in reverse-cholesterol transport. The accumulation of DPAn-3 in fasting PL and TG fractions is likely due to post-absorptive secretion after tissue synthesis. Because conversion of DPAn-3 to DHA occurs in canine neurologic tissues, this DPAn-3 may provide a circulating reservoir for DHA synthesis in such tissues. The absence of DPAn-3 in serum-CE suggests that such transport may be unidirectional. Although conversion of DPAn-3 to DHA is slow in most species, one-way transport of DPAn-3 in the circulation may help conserve this fatty acid as a substrate for DHA synthesis in brain and retinal tissues especially when dietary intakes of DHA are low.  相似文献   

2.
Decreases in brain docosahexaenoic acid (DHA) have been associated with losses in brain function leading to an interest in the conditions which lead to such brain decreases, and such variables as age. Also of relevance would be the rate of repletion of DHA when the n-3 dietary deficiency is reversed. This experiment describes dietary deficiency in n-3 fatty acids induced in weanling (3 week) and young adult (7 week) mice. There was an immediate and continuous loss of brain DHA with similar rates in the two age groups. Serum DHA declined more rapidly in younger animals with respect to similarly treated adults. Brain and serum docosapentaenoic acid (DPAn-6) increased more rapidly and to higher levels in the younger animals. A second experiment determined the rates of normalization of brain fatty acid profiles when alpha-linolenic acid was added to the diets of n-3 deficient mice. Brain DHA recovery occurred at a faster rate (half-time, T 1/2 = 1.4 weeks) when begun at weaning relative to young adult mice (T 1/2 = 3.5 weeks). Correspondingly, brain DPAn-6 recovered faster in the younger animals; the adult group had a half-time of more than twice that of the 3-week old group. This study therefore demonstrates that the young adult mouse brain DHA is somewhat plastic and can be partially depleted via a low n-3 fatty acid diet and subsequently restored when dietary n-3 fatty acids are repleted. Relevance of these findings for human nutrition is discussed.  相似文献   

3.
Plant sources of omega-3 fatty acids (FA) are needed that can materially raise tissue levels of long-chain omega-3 FA [i.e., eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 20:6n-3)]. Stearidonic acid (SDA; 18:4n-3) is the delta-6 desaturase product of alpha-linolenic acid (ALA; 18:3n-3), and when fed to humans, increases red blood cell (RBC) content of EPA to a greater extent than does ALA. This study was undertaken to determine the dose-dependence and time course of the increase in the EPA and DHA content of the heart and RBC in dogs. Adult male Beagles were fed 21, 64, or 193 mg/kg of SDA in in their food daily for up to 12 weeks. Positive and negative controls were given EPA (43 mg/kg) or high oleic acid sunflower oil, respectively. The baseline EPA content of RBC was 0.38 ± 0.03% which increased (P < 0.01) in a dose-dependent manner, with the high dose of SDA and EPA achieving levels of 1.33 ± 0.26 and 1.55. ± 0.28%, respectively. In the heart, the content of EPA rose from 0.06 ± 0.01 to 1.24 ± 0.22% in the EPA group and to 0.81 ± 0.32% in the high SDA group (both P < 0.01). In both tissues, DHA did not change. Compared to dietary EPA, SDA was 20–23% as efficient in raising tissue EPA levels. In conclusion, SDA supplementation increased the EPA content of RBC and heart and may have utility as a plant-based source of omega-3 FA.  相似文献   

4.
The n-6/n-3 fatty acid (FA) ratio has increased in the Western-style diet to ~10–15:1 during the last century, which may have contributed to the rise in cardiovascular disease (CVD). Prior studies have evaluated the effects on CVD risk factors of manipulating the levels of n-6 and n-3 FA using food and supplements or investigated the metabolic fate of linoleic acid (LNA) and α-linolenic acid (ALA) by varying the n-6/n-3 ratios. However, no previous studies have investigated the potential interaction between diet ratios and supplementation with eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). We used a factorial design approach with adults (n = 24) in a controlled feeding trial to compare the accretion of EPA and DHA into red blood cell membranes (RBC) by adding a direct source (algal oil supplement) of EPA and DHA in a diet with a 10:1 versus 2:1 ratio of n-6/n-3 FA. Subjects were randomized into 8-week crossover diet sequences and each subject consumed three of four diets [10:1, 10:1 plus supplement (10:1 + S), 2:1 and 2:1 + S]. LNA and ALA intakes were 9.4 and 7.7%, and 1.0 and 3.0% during the low and high ALA diets, respectively. Compared to the Western-style 10:1 diet, the 2:1 diet increased EPA by 60% (P < 0.0001) in RBC membranes without the direct EPA source and a 34% increase (P = 0.027) was observed with the 10:1 + S diet; however, DHA levels increased in both diet ratios only with a direct DHA source. Shifting towards a 2:1 diet is a valid alternative to taking EPA-containing supplements.  相似文献   

5.
The utilization of dietary docosahexaenoic acid (DHA; 22:6n−3) as a source of eicosapentaenoic acid (EPA; 20:5n−3) via retroconversion was investigated in both vegetarians and omnivores. For this purpose, an EPA-free preparation of DHA was given as a daily supplement (1.62 g DHA) over a period of 6 wk. The dietary supplement provided for a marked increase in DHA levels in both serum phospholipid (from 2.1 to 7.1 mol% in vegetarians and 2.2 to 7.6 mol% in omnivores) and platelet phospholipid (from 1.1 to 3.4 mol% in vegetarians and 1.4 to 3.9 mol% in omnivores). EPA levels rose to a significant but much lesser extent, while 20:4n−6, 22:5n−6, and 22:5n−3 all decreased. Based on the serum phospholipid data, the retroconversion of DHA to EPA in vivo was estimated to be 9.4% overall with no significant difference between omnivores and vegetarians.  相似文献   

6.
Individuals with metabolic syndrome (MetS) have a higher risk of type 2 diabetes and cardiovascular disease, therefore, research has been directed at reducing various components that contribute to MetS and associated metabolic impairments, including chronic low-grade inflammation. Epidemiological, human, animal and cell culture studies provide evidence that dietary n-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (18:3n-3, ALA), eicosapentaenoic acid (20:5n-3, EPA) and/or docosahexaenoic acid (22:6n-3, DHA) may improve some of the components associated with MetS. The current review will discuss recent evidence from human observational and intervention studies that focused on the effects of ALA, EPA or DHA on inflammatory markers in healthy adults and those with one or more features of MetS. Observational studies in healthy adults support the recommendation that a diet rich in n-3 fatty acids may play a role in preventing and reducing inflammation, whereas intervention studies in healthy adults have yielded inconsistent results. The majority of intervention studies in adults with features of MetS have reported a benefit for some inflammatory measures; however, other studies using high n-3 fatty acid doses and long supplementation periods have reported no effect. Overall, the data reviewed herein support recommendations for regular fatty fish consumption and point toward health benefits in terms of lowering inflammation in adults with one or more features of MetS.  相似文献   

7.
Oxylipins are bioactive lipids formed by the monooxygenation of polyunsaturated fatty acids (PUFA). Eicosanoids derived from arachidonic acid (ARA) are the most well-studied class of oxylipins that influence brain functions in normal health and in disease. However, comprehensive profiling of brain oxylipins from other PUFA with differing functions, and the examination of the effects of dietary PUFA and sex differences in oxylipins are warranted. Therefore, female and male Sprague–Dawley rats were provided standard rodent diets that provided additional levels of the individual n-3 PUFA α-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or the n-6 PUFA linoleic acid (LNA) alone or with ALA (LNA + ALA) compared to essential fatty acid-sufficient control diets. Oxylipins and PUFA were quantified in whole brains using HPLC-MS/MS and GC, respectively. Eighty-seven oxylipins were present at quantifiable levels: 51% and 17% of these were derived from ARA and DHA, respectively. At the mass level, ARA and DHA oxylipins comprised 81–90% and 6–12% of total oxylipins, while phospholipid ARA and DHA represented 25–35% and 49–62% of PUFA mass, respectively. Increasing dietary n-3 PUFA resulted in higher levels of oxylipins derived from their precursor PUFA; otherwise, the brain oxylipin profile was largely resistant to modulation by diet. Approximately 25% of oxylipins were higher in males, and this was largely unaffected by diet, further revealing a tight regulation of brain oxylipin levels. These fundamental data on brain oxylipin composition, diet effects, and sex differences will help guide future studies examining the functions of oxylipins in the brain.  相似文献   

8.
Southern bluefin tuna (SBT, Thunnus maccoyii) aquaculture is a highly valuable industry, but research on these fish is hampered by strict catch quotas and the limited success of captive breeding. To address these limitations, we have developed a SBT cell line (SBT-E1) and here we report on fatty acid metabolism in this cell line. The SBT-E1 cells proliferated well in standard Leibovitz’s L-15 cell culture medium containing fetal bovine serum (FBS) as the source of fatty acids. Decreasing the FBS concentration decreased the cell proliferation. Addition of the C18 polyunsaturated fatty acids (PUFA) α-linolenic acid (ALA, 18:3n-3) or linoleic acid (LNA, 18:2n-6) to the cell culture medium had little effect on the proliferation of the cells, whereas addition of the long-chain PUFA (LC-PUFA) arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3) significantly reduced the proliferation of the cells, especially at higher concentrations and especially for DHA. Addition of vitamin E to the culture medium overcame this effect, suggesting that it was due to oxidative stress. The fatty acid profiles of the total lipid from the cells reflected those of the respective culture media with little evidence for desaturation or elongation of any of the fatty acids. The only exceptions were EPA and ARA, which showed substantial elongation to 22:5n-3 and 22:4n-6, respectively, and DHA, which was significantly enriched in the cells compared with the culture medium. The results are discussed in light of the dietary PUFA requirements of SBT in the wild and in aquaculture.  相似文献   

9.
10.
The purpose of this study was to determine whether dietary n-3 and n-6 PUFA may affect retinal PUFA composition and PGE1 and PGE2 production. Male Wistar rats were fed for 3 months with diets containing: (1) 10% eicosapentaenoic acid (EPA) and 7% docosahexaenoic acid (DHA), or (2) 10% γ-linolenic acid (GLA), or (3) 10% EPA, 7% DHA and 10% GLA, or (4) a balanced diet deprived of EPA, DHA, and GLA. The fatty acid composition of retinal phospholipids was determined by gas chromatography. Prostaglandin production was measured by enzyme immunoassay. When compared to rats fed the control diet, the retinal levels of DHA were increased in rats fed both diets enriched with n-3 PUFA (EPA + DHA and EPA + DHA + GLA diets) and decreased in those supplemented with n-6 PUFA only (GLA diet). The diet enriched with both n-6 and n-3 PUFA resulted in the greatest increase in retinal DHA. The levels of PGE1 and PGE2 were significantly increased in retinal homogenates of rats fed with the GLA-rich diet when compared with those of animals fed the control diet. These higher PGE1 and PGE2 levels were not observed in animals fed with EPA + DHA + GLA. In summary, GLA added to EPA + DHA resulted in the highest retinal DHA content but without increasing retinal PGE2 as seen in animals supplemented with GLA only.  相似文献   

11.
We made a comparative analysis of the uptake, tissue deposition and conversion of dietary α-linolenic acid (ALA) to its long chain metabolites eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with preformed EPA + DHA. Diets containing linseed oil [with ALA at ~2.5 (4 g/kg diet), 5 (8 g/kg diet), 10 (16 g/kg diet), 25% (40 g/kg diet)] or fish oil [with EPA + DHA at ~1 (1.65 g/kg diet), 2.5 (4.12 g/kg diet), 5% (8.25 g/kg diet)] or groundnut oil without n-3 polyunsaturated fatty acids (n-3 PUFA) were fed to rats for 60 days. ALA and EPA + DHA in serum, liver, heart and brain increased with increments in the dietary ALA level. When preformed EPA + DHA were fed, the tissue EPA + DHA increased significantly compared to those given ALA. Normalized values from dietary n-3 PUFA to tissue EPA + DHA indicated that 100 mg of dietary ALA lead to accumulation of EPA + DHA at 2.04, 0.70, 1.91 and 1.64% of total fatty acids respectively in liver, heart, brain and serum. Similarly 100 mg of preformed dietary EPA + DHA resulted in 25.4, 23.8, 15.9 and 14.9% of total fatty acids in liver, heart, brain and serum respectively. To maintain a given level of EPA + DHA, the dietary ALA required is 12.5, 33.5, 8.3 and 9.1 times higher than the dietary EPA + DHA for liver, heart, brain and serum respectively. Hence the efficacy of precursor ALA is lower compared to preformed EPA + DHA in elevating serum and tissue long chain n-3 PUFA levels.  相似文献   

12.
The human metabolic syndrome and its frequent sequela, type 2 diabetes are epidemic around the world. Alpha-linolenic acid (ALA, 18:3 n-3), eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) consumption ameliorates some of these epidemics' features thus leading one to question if consumption of EPA and DHA, and their metabolic precursor ALA reduce the conversion of metabolic syndrome to type 2 diabetes and reduce the major cause of death in the metabolic syndrome and type 2 diabetes-myocardial infarction. Contributing to myocardial infarction are metabolic syndrome's features of dyslipidemia (including elevated total cholesterol and LDL-c), oxidation, inflammation, hypertension, glucose intolerance, overweight and obesity. Inflammation, glucose and lipid levels are variously influenced by disturbances in various adipocytokines which are in turn positively impacted by n-3 polyunsaturated fatty acid consumption. Type 2 diabetes has all these features though elevated total cholesterol and LDL-c are rarer. It is concluded that EPA and DHA consumption significantly benefits metabolic syndrome and type 2 diabetes primarily in terms of dyslipidemia (particularly hypertriglyceridemia) and platelet aggregation with their impact on blood pressure, glucose control, inflammation and oxidation being less established. There is some evidence that EPA and/or DHA consumption, but no published evidence that ALA reduces conversion of metabolic syndrome to type 2 diabetes and reduces death rates due to metabolic syndrome and type 2 diabetes. ALA's only published significance appears to be platelet aggregation reduction in type 2 diabetes.  相似文献   

13.
Omega-3 PUFA of marine origin reduce adiposity in animals fed a high-fat diet. Our aim was to learn whether EPA and DHA could limit development of obesity and reduce cellularity of adipose tissue and whether other dietary FA could influence the effect of EPA/DHA. Weight gain induced by composite high-fat diet in C57BL/6J mice was limited when the content of EPA/DHA was increased from 1 to 12% (wt/wt) of dietary lipids. Accumulation of adipose tissue was reduced, especially of the epididymal fat. Low ratio of EPA to DHA promoted the effect. A higher dose of EPA/DHA was required to reduce adiposity when admixed to diets that did not promote obesity, the semisynthetic high-fat diets rich in EFA, either α-linolenic acid (ALA, 18∶3 n−3, the precursor of EPA and DHA) or linoleic (18∶2 n−6) acid. Quantification of adipose tissue DNA revealed that except for the diet rich in ALA the reduction of epididymal fat was associated with 34–50% depression of tissue cellularity, similar to the 30% caloric restriction in the case of the high-fat composite diet. Changes in plasma markers and adipose gene expression indicated improvement of lipid and glucose metabolism due to EPA/DHA even in the context of the diet rich in ALA. Our results document augmentation of the antiadipogenic effect of EPA/DHA during development of obesity and suggest that EPA/DHA could reduce accumulation of body fat by limiting both hypertrophy and hyperplasia of fat cells. Increased dietary intake of EPA/DHA may be beneficial regardless of the ALA intake.  相似文献   

14.
The anti-inflammatory activity associated with fish oil has been ascribed to the long-chain polyunsaturated fatty acids (LC-PUFA), predominantly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Here we examined the anti-inflammatory effects of two DHA-rich algal oils, which contain little EPA, and determined the contribution of the constituent fatty acids, particularly DHA and docosapentaenoic acid (DPAn-6). In vitro, lipopolysaccharide (LPS)-stimulated Interleukin-1 beta (IL-1β) and Tumor Necrosis Factor-alpha (TNF-α) secretion in human peripheral blood mononuclear cells (PBMC) was inhibited with apparent relative potencies of DPAn-6 (most potent) > DHA > EPA. In addition, DPAn-6 decreased intracellular levels of cyclooxygenase-2 (COX-2) and was a potent inhibitor of pro-inflammatory prostaglandin E2 (PGE2) production. DHA/DPAn-6-rich DHA-S™ (DHA-S) algal oil was more effective at reducing edema in rats than DHA-rich DHA-T™ (DHA-T), suggesting that DPAn-6 has anti-inflammatory properties. Further in vivo analyses demonstrated that feeding DPAn-6 alone, provided as an ethyl ester, reduced paw edema to an extent approaching that of indomethacin and enhanced the anti-inflammatory activity of DHA when given in combination. Together, these results demonstrate that DPAn-6 has anti-inflammatory activity and enhances the effect of DHA in vitro and in vivo. Thus, DHA-S algal oil may have potential for use in anti-inflammatory applications.  相似文献   

15.
n‐3 Tetracosapentaenoic acid (24:5n‐3, TPAn‐3) and tetracosahexaenoic acid (24:6n‐3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n‐3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn‐3 and THA and their response to changing dietary α‐linolenic acid (18:3n‐3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post‐weaning. Serum n‐3 and n‐6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography–mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn‐3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn‐3 or THA change across all dietary DHA intake levels. Serum TPAn‐3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn‐3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.  相似文献   

16.
Diets containing high n-3 polyunsaturated fatty acids (PUFA) decrease inflammation and the incidence of chronic diseases including cardiovascular disease and nonalcoholic fatty liver disease while trans-fatty acids (TFA) intake increases the incidence of these conditions. Some health benefits of n-3 PUFA are mediated through the impact of their oxygenated metabolites, i.e. oxylipins. The TFA, trans-10, cis-12-conjugated linoleic acid (CLA; 18:2n-6) is associated with adipose tissue (AT) inflammation, oxidative stress, and wasting. We examined the impact of a 4-week feeding of 0, 0.5, and 1.5% docosahexaenoic acid (DHA; 22:6n-3) in the presence and absence of 0.5% CLA on AT oxylipin profiles in female C57BL/6N mice. Esterified oxylipins in AT derived from linoleic acid (LNA), alpha-linolenic acid (ALA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), DHA, and putative from CLA were quantified. CLA containing diets reduced AT mass by ~62%. Compared with the control diet, the DHA diet elevated concentrations of EPA-and DHA-derived alcohols and epoxides and LNA-derived alcohols, reduced ARA-derived alcohols, ketones, epoxides, and 6-keto-prostaglandin (PG) F (P < 0.05), and had mixed effects on ALA-derived alcohols. Dietary CLA lowered EPA-, DHA-, and ALA-derived epoxides, ARA-derived ketones and epoxides, and ALA-derived alcohols. While dietary CLA induced variable effects in EPA-, DHA-, and LNA-derived alcohols and LNA-derived ketones, it elevated ARA-derived alcohols and PGF, PGF, and F2-isoprostanes. DHA counteracted CLA-induced effects in 67, 57, 43, and 29% of total DHA-, ARA-, EPA-, and ALA-derived oxylipins, respectively. Thus, CLA elevated proinflammatory oxylipins while DHA increased anti-inflammatory oxylipins and diminished concentration of CLA-induced pro-inflammatory oxylipins in AT.  相似文献   

17.
Marine oils are commonly added to conventional foods and dietary supplements to enhance their contents of omega-3 polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which have been associated with numerous potential health benefits. This study compared American Oil Chemists’ Society (AOCS) Official Methods Ce 2b-11 and Ce 2c-11 for determining EPA and DHA in foods and dietary supplements and found that AOCS Ce 2c-11 produces significantly higher analyzed values, which could be attributed to a more comprehensive breakdown of the sample matrix and derivatization of fatty acids. Our subsequent food matrix extension validation of AOCS Ce 2c-11 demonstrated that the method produces true, accurate, sensitive, and precise determinations of EPA, DHA, and total omega-3 PUFA in foods and dietary supplements containing added marine oil, including those formulated with emulsified and microencapsulated oils. The method detection limits for EPA and DHA were 0.012 ± 0.002 and 0.011 ± 0.003 mg g−1, respectively (means ± SD). The analyzed contents of EPA (1.26–386 mg serving−1), DHA (1.37–563 mg serving−1), and total omega-3 PUFA (2.69–1270 mg serving−1) were reported for 27 conventional food and dietary supplement products. Eighteen products declared contents of DHA, EPA + DHA, or total omega-3 PUFA on product labels, and the analyzed contents of those fatty acids varied from 95 to 162% of label declarations for all but two of the products.  相似文献   

18.
The effects of n-3 fatty acid supplementation in the form of fresh fish, fish oil, and docosahexaenoic acid (DHA) oil on the fatty acid composition of plasma lipid fractions, and platelets and erythrocyte membranes of young healthy male students were examined. Altogether 59 subjects (aged 19–32 yr, body mass index 16.8–31.3 kg/m2) were randomized into the following diet groups: (i) control group; (ii) fish diet group eating fish meals five times per week [0.38±0.04 g eicosapentaenoic acid (EPA) and 0.67±0.09 g DHA per day]; (iii) DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA in triglyceride form); and (iv) fish oil group (1.33 g EPA and 0.95 g DHA/d as free fatty acids) for 14 wk. The fatty acid composition of plasma lipids, platelets, and erythrocyte membranes was analyzed by gas chromatography. The subjects kept 4-d food records four times during the study to estimate the intake of nutrients. In the fish diet, in DHA oil, and in fish oil groups, the amounts of n-3 fatty acids increased and those of n-6 fatty acids decreased significantly in plasma lipid fractions and in platelets and erythrocyte membranes. A positive relationship was shown between the total n-3 polyunsaturated fatty acids (PUFA) and EPA and DHA intake and the increase in total n-3 PUFA and EPA and DHA in all lipid fractions analyzed. DHA was preferentially incorporated into phospholipid (PL) and triglyceride (TG) and there was very little uptake in cholesterol ester (CE), while EPA was preferentially incorporated into PL and CE. The proportion of EPA in plasma lipids and platelets and erythrocyte membranes increased also by DHA supplementation, and the proportion of linoleic acid increased in platelets and erythrocyte membranes in the DHA oil group as well. These results suggest retroconversion of DHA to EPA and that DHA also interferes with linoleic acid metabolism.  相似文献   

19.
The accumulation of fatty acids in retina, brain, liver, and plasma of 30-day-old rat pups consuming various levels of linoleic acid (LA, 18:2n-6) and constant α-linolenic acid (ALA, 18:3n-3) is reported. Dams were fed graded levels of LA during gestation and lactation, and the pups were maintained on the diet of their dams until the end of the brain growth spurt at 30 d of life. Milk, and pup brain, retina, liver, and plasma were analyzed quantitatively for fatty acid profile. The percentage of docosahexaenoic acid (DHA, 22:6n-3) in retina increased from an LA-deficient dietary level, peaked at the 9:1 (LA/ALA) level, then fell for the 41:1 and 69:1 levels. In contrast, the brain DHA percentage was unaffected by dietary LA levels. Retinal unsaturated fatty acid levels paralleled liver and plasma levels. The milk fatty acid composition mirrored the diets. These data show that the retinal fatty acid composition responds sensitively to dietary fatty acid composition, similar to liver and plasma, while the brain unsaturate composition is nearly independent of dietary composition.  相似文献   

20.
Wu  Meng-Ting  Su  Hui-Min  Cui  Yi  Windust  Anthony  Chou  Hong-Nong  Huang  Ching-jang 《Lipids》2015,50(10):945-953
Dietary fucoxanthin (FX), a carotenoid compound from brown algae, was found to increase docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6) in the liver of mice. DHA and ARA are known to be biosynthesized from the respective precursor α‐linolenic acid (ALA, 18:3n‐3) and linoleic acid (LNA, 18:2n‐6), through desaturation and chain elongation. We examined the effect of FX on the fatty acid metabolism in HepG2 cells (Hepatocellular carcinoma, human). In the first experiment, cells were co‐treated with ALA (100 μM) and FX (0–100 μM) or vehicle for 48 h. FX increased eicosapentaenoic acid (EPA, 20:5n‐3), docosapentaenoic acid (DPA, 22:5n‐3), DHA at concentrations of ≥50 μM. To clarify the change in the metabolism of polyunsaturated fatty acid (PUFA), in the second experiment, cells were co‐treated with universally‐[13C]‐labeled (U‐[13C]‐) ALA (100 μM) and FX (100 μM) for 0.5, 3, 6, 24 and 48 h. [13C] labeled‐EPA, DPA and DHA content in HepG2 cells were all increased by FX after 48 h treatment. Furthermore, estimated delta‐5 desaturase (D5D) but not delta‐6 desaturase (D6D) activity index was increased at 48 h. These results suggested that FX may enhance the conversion of ALA to longer chain n‐3 PUFA through increasing D5D activity in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号