首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calf serum lubricants consisting of various polypeptide constituent fractions are routinely used in knee wear simulators as part of the standardized test protocol. Three calf sera (bovine, new-born and alpha) were diluted as per the recommendation of ISO 14243-3 and used in displacement-controlled knee wear simulators to investigate their effects on polyethylene wear. Biochemical analyses included measuring total polypeptide degradation, electrophoretic profiles and low-molecular weight polypeptide concentrations to elucidate their involvement in the wear process. The effects of the various calf sera constituent fractions on microbial growth were also explored. The polyethylene wear rates and the results from the biochemical analyses for the three calf serum lubricants were all found to be statistically significantly different from each other. The lubricant derived from the alpha-calf serum was closest in constituent fractions to human synovial fluid. It also showed the lowest polyethylene wear rate (14.38 +/- 0.85 mm3/million cycles) and the lowest amount of polypeptide degradation (7.77 +/- 3.87%). Furthermore, the alpha-calf serum lubricant was associated with the least amount of change in the electrophoretic profile, the least change in low-molecular weight polypeptide concentration, and the lowest microbial growth in the presence of sodium azide (a microbial inhibitor conventionally used in implant wear testing). Replacing sodium azide with a broad spectrum antibiotic-antimycotic eradicated the microbial growth. Some speculation was entertained regarding the effect of alpha-calf serum on colloid-mediated boundary lubrication. Based on the results, it was recommended that ISO 14243-3 be modified to include guidelines on calf serum constituent fractions that would favour using alpha-calf serum in order to improve the fidelity of the simulation in knee implant wear testing.  相似文献   

2.
A six-station displacement-controlled knee simulator with separately controlled left (L) and right (R) banks (three wear implants per bank) was commissioned for a total of three million cycles (Mc) following ISO 14243-3. A commissioning protocol was applied to compare the polyethylene wear among the six wear stations by exchanging the implants between wear stations. Changes in lubricant characteristics during wear testing, such as polypeptide degradation, low-molecular-weight polypeptide concentration, and possible microbial contamination were also assessed. The total mean wear rate for the implants was 23.60 +/- 1.96 mm3/Mc and this was of a similar magnitude to the mean wear rate for the same implant tested under similar conditions by DePuy Orthopaedics Inc. (Warsaw, IN). Repeated run-in wear was observed when the implants were exchanged between wear stations, suggesting that implants should be subjected to the same wear station throughout the duration of a wear test. The total polypeptide degradation for the implants measured 30.53 +/- 3.96 percent; the low-molecular-weight polypeptide concentration of the "used" lubricant for implants (0.131 +/- 0.012 g/L) was 3.3 times greater than the mean polypeptide concentration of the fresh, "unused" lubricant (0.039 +/- 0.004 g/L). This increase in low-molecular weight polypeptide concentration was suggested to be attributable to protein shear in the articulation of the implant, the circulation of the lubricant, and some proteolytic activity. Sodium azide was ineffective in maintaining a sterile environment for wear testing as a single, highly motile Gram-negative micro-organism was identified in the lubricant from wear tests.  相似文献   

3.
Fluid adsorption and the associated mass gain behaviour in tibial inserts of total knee replacements was investigated in polyethylene (PE) manufactured from extruded GUR 1050 resin. Repeatedly removing the PE inserts from the soak fluid for gravimetric assessment (including cleaning, desiccation, and weighing) increased the mass gain. Soaking PE inserts for 46 days or 92 days seemed to give about the same mass gain. PE inserts that were soaked at 37 degrees C gained more mass than PE inserts soaked at room-temperature. Gas-plasma sterilized PE inserts gained less mass than gamma-in-air sterilized PE inserts. No statistically significant differences were detected in mass gain between PE inserts that were of 10mm and 14mm thickness. The mass gain of PE inserts was higher in protein-rich soak fluid compared with low-ion distilled water. Prior to knee simulator wear testing, tibial PE inserts should be conditioned in the same medium and under the same test conditions (gravimetric assessment frequency, fluid protein content, and fluid temperature). This approach would help improve the accuracy and precision of the gravimetrically determined PE wear rate during knee simulator wear testing.  相似文献   

4.
Ultra-high molecular weight polyethylene (UHMWPE) acetabular cups were tested against alumina-ceramic femoral heads using a new type of hip joint simulator according to ISO/FDIS 14242-1. Bovine serum as well as newborn calf serum were used as test fluids. Total polyethylene wear was determined by weight loss of the cups. In addition. wear depth and its distribution were recorded by means of a coordinate measurement system. Wear particle analysis and inspection of the worn polyethylene surfaces using light and scanning electron microscopy (SEM) were performed to analyse damage and identify the acting wear mechanisms. The total wear rate was determined to be 22.07 +/- 1.75 mg/10(6) cycles for the bovine serum group and 26.57 + 3.55 mg/10(6) cycles for the calf serum group. Unexpectedly, the formation of two wear vectors corresponding to recent clinical findings was detected. Retrieved polyethylene wear debris was comparable in size and shape with clinical findings. The test method described by ISO/FDIS 14242-1 produced reliable and reproducible wear data using UHMWPE acetabular cups articulating against alumina-ceramic heads. In the authors' opinion, the lubricant composition should be described in more detail, since the protein and additive content seem to have a high impact on the wear results. It needs to be emphasized that the findings of this study cannot be regarded as a general validation of hip wear tests according to ISO/FDIS 14242-1 but are limited to the material combinations investigated herein. Further testing of other clinically relevant materials and interlaboratory ring tests must follow.  相似文献   

5.
For appropriate in vitro wear testing of prostheses and their biomaterials, the choice of lubricant is critical. Bovine serum is the lubricant recommended by several international standards for wear testing artificial joints and their biomaterials because the wear rate and wear mechanisms closely match clinical results of polyethylene bearings. The main problem with the use of bovine serum as a lubricant is protein degradation and precipitation formation, effects that are recognized as having a direct impact on wear processes. Hence, some researchers have questioned the validity of using bovine serum in simulator testing. This paper reviews the various lubricants used in laboratory wear studies and also the properties of the synovial fluid that the lubricant is trying to replicate. It is clear from the literature survey that the composition of bovine-serum-based lubricants does not match that of synovial fluid. In view of this conclusion, it is suggested that there is a need to develop an alternative lubricant that can replace bovine serum.  相似文献   

6.
In this study, osteoarthritic and periprosthetic synovial fluid samples were rheologically and biochemically compared to develop a hyaluronic acid (HA) supplemented bovine serum (BS) lubricant that mimicked the properties of human joint synovial fluid. The effect of this BS + HA lubricant (50 per cent bovine calf serum + 1.5 g/l HA) on the wear rate of ultra-high molecular weight polyethylene (UHMWPE) during a total knee replacement wear test was then investigated. In conjunction with biochemical similarities, the rheological analysis showed that the BS + HA lubricant viscosity was not statistically different to aspirated total knee arthroplasty (TKA) revision joint fluid viscosity over a range of physiologic shear rates. Gravimetric results at 5 million wear testing cycles showed that the BS + HA lubricant produced an average of 6.88 times more UHMWPE wear than 50 per cent bovine serum lubricant alone. The BS + HA lubricated CoCr femoral component surfaces revealed pitting and surface roughening that was not observed using standard bovine serum only lubricants, but that was similar to the metallic surface corrosion observed on in vivo CoCr femoral component retrievals. These findings support the hypothesis that the addition of HA to simulator lubricant is capable of producing CoCr femoral component surface damage similar to that observed in vivo.  相似文献   

7.
T. J. Joyce  A. Unsworth 《Wear》2001,250(1-12):199-205
A new design of finger wear simulator has been manufactured. The simulator is a dual cycle machine, interspersing dynamic flexion–extension motion, where the loads were 10–15 N, with periods of a static 100 N ‘pinch’ load. Also, a two-piece finger prosthesis has been designed and manufactured from silane cross-linked polyethylene. Using the simulator, a comparison of the wear of the cross-linked polyethylene prosthesis was undertaken, with Ringer solution, distilled water and dilute bovine serum as the lubricants. Each test was run at 37°C and included a control prosthesis to account for lubricant uptake. All prostheses came from the same batch, having a gel content of 87%. In total, testing exceeded 27 million cycles. With bovine serum, the total wear factor for the prosthesis was 0.07×10−6 mm3/N m. With Ringer solution it was 0.98×10−6 mm3/N m and with distilled water the wear factor was 0.60×10−6 mm3/N m. This order of results matched that found with pin on plate wear tests using these same three lubricants. The lower wear found with bovine serum may have been due to the positive boundary lubricating effects of the proteins within the serum. Lubricant uptake was greater and more significant in the bovine serum test.  相似文献   

8.
A dual-cycle finger wear simulator has been designed, manufactured and commissioned. The simulator interspersed dynamic flexion-extension motion under light load with a heavier static 'pinch' load to a test prosthesis immersed in a lubricant heated to 37 degrees C. A validation test was undertaken on a size 2 Swanson prosthesis, leading to prosthesis failure in less than 1 million cycles. A second test was carried out on a Durham metacarpophalangeal prosthesis. After 4.8 million cycles a total wear factor for the joint of 0.60 x 10(-6) mm3/N m was calculated, with no cracks or damage visible. Both test results compare well with earlier tests undertaken on the Stokoe finger wear simulator.  相似文献   

9.

Bio-degradable lubricants are an attractive alternative for the mineral based and synthetic based lubricants. Bio-degradable lubricants are environmental-friendly and non-toxic. The present study deals with the tribological investigation of bio-degradable nano lubricants for worm gear applications. Nano additives like CuO and TiO2 were used. Bio-degradable oils like palm oil and sunflower oil were used as base oils. The nano lubricants were prepared by adding two nano additives and two bio-degradable oils each of 0.1 % and 0.2 % weight composition. Friction and wear characteristics were tested on pin-on-disc tribometer under varying load conditions. Extreme pressure tests for nano lubricants were carried out using four ball tester. The wear surface obtained was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy. From the tests conducted, it was found that the addition of nano additives in biodegradable oils reduced the friction co-efficient and wear rate to a considerable extent.

  相似文献   

10.
Diamond-like carbon (DLC) protective films have received considerable attention in recent years. Beside tools and dies, diamond-like and related coatings are starting to find application in some highly stressed mechanical components, including bearings and gears. Several different gear tests show an increase in carrying load capacity or prolonged lifetime with tungsten carbide-doped DLC (W-DLC)-coated gears. The lubricants have been mostly commercially available gear oils that were primarily developed or tailored for ferrous materials and are probably far from optimal for amorphous W-DLC layers.In the present work, the influence of lubricant chemistry on the friction and wear in W-DLC-coated contacts was investigated using a reciprocating test device. The first six test lubricants were conventional non-inhibited API/ATIEL base stocks followed by selected test blends in combination with different surface-active single additives. Experimental results in coated contact have shown that for friction reduction performance, additives are not necessary, while wear resistance is related with the chemistry of the lubricant. It may be concluded at this stage that different mechanisms of friction-induced interaction between lubricants and W-DLC-coated layers are possible.  相似文献   

11.
The performance of two knee simulators designed by ProSim (Manchester, UK) was evaluated by comparison of the wear seen in the press-fit condylar (PFC) Sigma (DePuy) knee prosthesis. Twelve specimens of the same design and manufacturing specification, were subjected to a wear test of 2 x 10(6) cycles duration using bovine serum as a lubricant. The anterior/posterior displacement and internal/external rotation inputs were based on the kinematics of the natural knee. International Standards Organization (ISO) standards were used for the flexion and axial load. The wear rates and wear scar areas were compared across all stations. The mean wear rates found were 17.6+/-5 mm3/10(6) cycles for stations 1 to 6 and 19.6+/-4 mm3/10(6) cycles for stations 7 to 12, resulting in an overall mean wear rate of 18.1+/-3 mm3/10(6) cycles. The differences between the two simulators were not significant. The average wear scar area seen on inserts from stations I to 6 was calculated at 32.4+/-1 per cent of the intended articulating surface. Similarly on stations 7 to 12 the average wear scar area was 30.7+/-3 per cent. The wear scars seen were a good physiological representation of those found from clinical explant data. This study has shown good repeatability from the simulator, both within and between the simulators.  相似文献   

12.
There is considerable interest in the wear of polyethylene and the resulting wear-debris-induced osteolysis in artificial hip joints. Proteins play an important role as boundary lubricants in vivo in the pseudosynovial fluid, and these are reproduced in in vitro tests through the use of bovine serum. Little is known, however, about the effect of phospholipid concentrations within proteinaceous solutions on the wear of ultra-high molecular weight polyethylene (UHMWPE). The effects of protein-containing lubricants with 0.05, 0.5 and 5 per cent (w/v) phosphatidyl choline concentrations on the wear of ultra-high molecular weight polyethylene (UHMWPE) were compared with 25 per cent (v/v) bovine serum which had 0.01 per cent (w/v) lipid; the effects were compared in a hip joint simulator with smooth (n = 4) and scratched (n = 3) femoral heads. The control bovine serum lubricant produced UHWMPE wear of 55 and 115 mm3/10(6) cycles on the smooth and rough heads respectively. The increased phospholipid concentration significantly reduced the wear rate. At the higher concentration (5% w/v phosphatidyl choline) the average wear was reduced to less than 2 mm3/10(6) cycles. Even with the relatively low concentrations of 0.05% w/v phosphatidyl choline the wear was reduced by at least threefold compared with the bovine serum tests for both the smooth and rough femoral heads. There may be considerable differences in the phospholipid concentrations in patients' synovial fluid and this is highly likely to produce considerable variation in wear rates. In vitro, differences in the phospholipid concentration of lubricants may also cause variation in wear rates between different simulator tests.  相似文献   

13.
An in vitro wear study of alumina-alumina total hip prostheses.   总被引:1,自引:0,他引:1  
Four 28 mm diameter alumina-alumina hip prostheses were tested in the Mkll Durham hip simulator for 5 x 10(6) cycles using 25 per cent bovine serum as lubricant. Wear of the heads and cups was measured gravimetrically. The mean and standard deviation of the wear rate for the alumina cups was 0.097 +/- 0.039 mm3/10(6) cycles. The femoral heads produced such low wear that it could not be measured by weighing but could be detected byincreased surface roughness measurements. Such low wear rates represent about one-five-hundredthof the wear of ultra-high molecular weight polyethylene (UHMWPE) against ceramic in a similar test and supports work which indicates that fluid film lubrication exists in these joints.  相似文献   

14.
To gain a better understanding of the ultra-high molecular weight polyethylene (UHMWPE) wear mechanism in the physiological environment, the effects of protein and lipid constituents of synovial fluid on the specific wear rate of UHMWPE were examined experimentally. The multidirectional sliding pin-on-plate wear tester was employed to simulate the simplified sliding condition of hip joint prostheses. Bovine serum γ-globulin and synthetic l--DPPC were used as model protein and lipid constituents of synovia, respectively. Results of the wear test indicated that the UHMWPE wear rate primarily depended on the protein concentration of the test lubricant. Lipids acted as a boundary lubricant and reduced polyethylene wear in the low protein lubricants. However, the polyethylene wear rate increased with increasing lipid concentrations if the protein concentration was within the physiological level. Increased interactions between protein and lipid molecules and lipid diffusion to polyethylene surface might be responsible for the increased wear.  相似文献   

15.
Ultra-high molecular weight polyethylene (UHMWPE) is a common bearing component in total knee replacement (TKR) implants, and its susceptibility to wear continues to be the long-term limiting factor in the life of these implants. This study hypothesized that in TKR systems, a highly cross-linked (HXL) UHMWPE blended with vitamin E will result in reduced wear as compared to a direct compression-moulded (DCM) UHMWPE. A wear simulation study was conducted using an asymmetric lateral pivoting '3D Knee' design to compare the two inserts. The highly cross-linked UHMWPE was aged prior to the testing and force-controlled wear testing was carried out for 5 million cycles using a load-controlled ISO-14243 standard at a frequency of 1 Hz on both groups. Gravimetric measurements of DCM UHMWPE (4.4 +/- 3.0 mg/million cycles) and HXL UHMWPE with vitamin E (1.9 +/- 1.9 mg/million cycles) showed significant statistical differences (p < 0.01) between the wear rates. Wear modes and surface roughness for both groups revealed no significant dissimilarities.  相似文献   

16.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

17.
Experimental wear testing is an essential step in the evaluation of unicompartmental knee prostheses; the major mechanisms that dominate the wear of conventional ultra high molecular weight polyethylene tibial knee menisci are the sub-surface cracking and delamination that induce particle release by abrasion/adhesion and subsequently periprosthetic osteolysis. The aim of this study was to determine whether plastic deformation affects the wear of the polymer and to measure the magnitude of these effects. Wear test was performed using a displacement-control knee wear simulator with “three-plus-one” stations, in accordance with the ISO 14243-3/2. A state-of-the-art coordinate measuring machine was used to quantify the volumetric mass loss of the mobile knee polyethylene menisci as well as creep/plastic deformations. The volumetric wear measured by this method was compared to that measured by the gravimetric method. Raman spectroscopy showed morphology changes induced by mechanical stress in both the upper and lower surfaces of the menisci. The amorphous content increased at expenses of the crystalline orthorhombic content, which generally decreased in all menisci. A slight orthorhombic → monoclinic phase transformation occurred upon mechanical stress. Plastic deformation appeared as the main factor affecting the trend of the spectroscopic markers and thus the morphology degradation.  相似文献   

18.
A long-term wear test was performed on Kinemax and Kinematic (Howmedica Inc.) knee bearings on the Durham six-station knee wear simulator. The bearings were subjected to flexion/extension of 65-0 degrees, anterior-posterior translation of between 4.5 and 8.5 mm and a maximum axial load of 3 kN. Passive abduction/adduction and internal/external rotation were also permitted, however, two of the stations had a linkage system which produced +/- 5 degrees active internal/external rotation. The bearings were tested at 37 degrees C in a 30 per cent bovine serum solution and the test was run to 5.6 x 10(6) cycles. The bearings from stations 2 and 3, and stations 4 and 5 were swapped during the test to investigate the effects of interstation variability. The average wear rate and standard error was 3.00 +/- 0.98 mg/10(6) cycles (range 1.33-4.72 mg/10(6) cycles) for the Kinemax bearings and 3.78 +/- 1.04 mg/10(6) cycles (range 1.87-4.89 mg/10(6) cycles) for the Kinematic bearings. There were no significant differences in wear rates between the different bearing designs, the addition of active internal/external rotation or a change of stations. However, the wear tracks were different for the two types of bearings and with active internal/external rotation. The wear rates and factors were generally lower than previously published in vitro wear results; however, this may have been due to a difference in the axial loads and lubricants used. The appearance of the wear tracks with active internal/external rotation was comparable with those seen on explanted knee bearings.  相似文献   

19.
A ball-on-flat reciprocating micro-tribometer has been used to measure the friction coefficient between aluminium alloy strip and a steel ball. A relatively small ball and correspondingly low contact load is used to give a contact width of the order of 100 m, closer to asperity contact widths than generally found for this type of test. The effects of load, initial strip surface roughness, lubricants and boundary additives are investigated. It is found that the friction coefficient is significantly reduced by the addition of a lubricant. Observations of the wear tracks and ball surface show that the material transfer from aluminium to the ball is reduced in the presence of the lubricant. The initial friction coefficient is further reduced by the addition of a boundary additive, but the friction coefficient after 8 cycles is unchanged.  相似文献   

20.
The influence of lubricant viscosity and additives on the average wear rate of spur gear pairs was investigated experimentally. The gear specimens of a comprehensive gear durability test program that made use of seven lubricants covering a range of viscosities were examined to measure gear tooth wear. The measured wear was related to the as-manufactured surface roughness, the elastohydrodynamic film thickness, and the experimentally determined contact fatigue lives of the same specimens. In general, the wear rate was found to be inversely proportional to the viscosity of the lubricant and to the lambda ratio (also sometimes called the specific film thickness). The data also show an exponential trend between the average wear rates and the surface fatigue lives. Lubricants with similar viscosities but differing additives and compositions had somewhat differing gear surface fatigue lives and wear rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号