首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblasts in monolayer culture secrete gelatinase A (MMP2; 72 kDa type IV collagenase) only in its proenzyme form. Unlike other secreted matrix metalloproteinases, progelatinase A is refractory to activation by serine proteinases. Disparate agents, including monensin, cytochalasin D, and concanavalin A, have been found to mediate the activation of gelatinase A zymogen secreted by fibroblast monolayers. Our finding that monensin-mediated activation can be reversed by the protein tyrosine kinase inhibitor genistein (Li et al., Experimental Cell Research 232 (1997) 332) prompted us to investigate the effect of the specific inhibitor of protein tyrosine phosphatases, sodium orthovanadate, on progelatinase A activation. Treatment of fibroblast monolayers with orthovanadate also results in the secretion of activated gelatinase A. This activation is dose- and time-dependent, requires protein synthesis, and is associated with cell membranes. Vanadate-mediated activation does not occur in the presence of herbimycin A, a protein tyrosine kinase inhibitor. As with progelatinase activation mediated by monensin, concanavalin A, and cytochalasin D, orthovanadate treatment results in increased synthesis of the membrane proteinase MT1-MMP, that can catalyze the activation of progelatinase A. Protein tyrosine kinase inhibitors are able to prevent the increase of MT1-MMP mRNA, as shown by Northern blot and RT-PCR. In addition, orthovanadate potentiates the effects of monensin and concanavalin A. While treatment with monensin or concanavalin A result only in an increase of the putative activator MT1-MMP, orthovanadate also reduces the production of the specific inhibitor TIMP-2. These experiments implicate protein tyrosine phosphorylation in the signal transduction pathways which lead to the activation of progelatinase A.  相似文献   

2.
Extracellular matrix (ECM) turnover is an event that is tightly regulated. Much of the coordinate (physiological) or discoordinate (pathological) degradation of the ECM is catalyzed by a class of proteases known as the matrix metalloproteinases (MMPs) or matrixins. Matrixins are a family of homologous Zn atom dependent endopeptidases that are usually secreted from cells as inactive zymogens. Net degradative activity in the extracellular environment is regulated by specific activators and inhibitors. One member of the matrixin family, gelatinase A, is regulated differently from other MMPs, suggesting that it may play a unique role in cell-matrix interactions, including cell invasion. The conversion from the 72 kDa progelatinase A to the active 62 kDa species may be a key event in the acquisition of invasive potential. This discussion reviews some recent findings on the cellular mechanisms involved in progelatinase A activation and, in particular, the role of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) and transmembrane containing metalloproteinases (MT-MMP) in this process.  相似文献   

3.
In prior work we showed that a metallogelatinase is secreted from dog mastocytoma cells and directly activated by exocytosed mast cell alpha-chymase. The current work identifies the protease as a canine homologue of progelatinase B (92-kDa gelatinase, MMP-9), determines the sites cleaved by alpha-chymase, and explores the regulation of gelatinase expression in mastocytoma cells. To obtain a cDNA encoding the complete sequence of mastocytoma gelatinase B, a 2. 3-kilobase clone encoding progelatinase was isolated from a BR mastocytoma library. The sequenced cDNA predicts a 704-amino acid protein 80% identical to human progelatinase B. Regions thought to be critical for active site latency, such as the Cys-containing propeptide sequence, PRCGVPD, and the catalytic domain sequence, HEFGHALGLDHSS, are entirely conserved. Cleavage of progelatinase B by purified dog alpha-chymase yielded an approximately 84-kDa product that contained two NH2-terminal amino acid sequences, QTFEGDLKXH and EGDLKXHHND, which correspond to residues 89-98 and 92-101 of the cDNA predicted sequence, respectively. Thus, alpha-chymase cleaves the catalytic domain of gelatinase B at the Phe88-Gln89 and Phe91-Glu92 bonds. Like BR cells, the C2 line of dog mastocytoma cells constitutively secrete progelatinase B which is activated by alpha-chymase. By contrast, non-chymase-producing C1 cells secrete a gelatinase B (which remains in its proform) only in response to 12-O-tetradecanoylphorbol-13-acetate. Whereas 12-O-tetradecanoylphorbol-13-acetate stimulation of BR cells produced a approximately 15-fold increase in gelatinase B mRNA expression, dexamethasone down-regulated its expression by approximately 5-fold. Thus, extracellular stimuli may regulate the amount of mast cell progelatinase B expressed by mast cells. These data further support a role for mast cell alpha-chymase in tissue remodeling involving gelatinase B-mediated degradation of matrix proteins.  相似文献   

4.
Matrix metalloproteinases (MMPs) are members of a multigene family of zinc-dependent enzymes involved in the degradation of numerous extracellular matrix (ECM) components. Among these enzymes, membrane-type MMPs (MT-MMPs) play a major role in the activation of progelatinase A (MMP-2). The molecular structure of these enzymes is characterized by a transmembrane domain and the presence of an insertion of 11 amino-acids between the pro-peptide and the catalytic domains, which may be cleaved by furin-like enzymes leading to the activated form of the enzymes. MT1-MMP appears to play a dual role in extracellular matrix remodeling through activation of progelatinase A and procollagenase 3 and direct cleavage of some ECM macromolecules such as gelatin, type I collagen and fibronectin. Tissue inhibitor of MMPs-2 (TIMP-2) serves as an intermediate in progelatinase A activation by binding to MT1-MMP and progelatinase A on the plasma membrane. In vivo, MT1-MMP is overexpressed in malignant tumor tissues in which it was mainly localized in stromal cells surrounding the neoplastic tissue. These peritumoral fibroblasts, under particular stimuli, would be induced to overexpress MT1-MMP and consequently activate gelatinase A leading to ECM degradation. The expression of MT1-MMP is however observed in vitro in the invasive tumor cells which might represent an late stage of tumor progression. All these data confirm the important role of MT-MMPs in tumor invasion and highlight a cooperation between tumor and stromal cells for the production of these enzymes. The contribution of MMPs in a metastatic process leads to the development of novel therapies using inhibitors of these enzymes. Among a multitude of synthetic inhibitors generated, Marimastat is already clinically employed in cancer treatment.  相似文献   

5.
Macrophages are present in inflammatory tissue sites where abnormal degradation of the extracellular matrix takes place. To evaluate the potential of macrophages to participate in such matrix destruction, we studied the effects of three cytokines present in inflammatory tissue sites, TNF-alpha, IL-1beta, and IFN-gamma, on the production of three matrix-degrading metalloproteinases, interstitial collagenase, stromelysin, and 92-kDa gelatinase, as well as their natural inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases number 1), by human monocyte-derived macrophages differentiated in vitro. Spontaneous production of interstitial collagenase and stromelysin by these cells was minimal, and was not influenced by the cytokines. In contrast, the cells secreted substantial basal amounts of 92-kDa gelatinase, the secretion of which was stimulated (2- to 15-fold; on average 5-fold) by both TNF-alpha and IL-1beta, while the production of TIMP-1 was unaffected. IFN-gamma suppressed the production of the 92-kDa gelatinase induced by TNF-alpha- and IL-1beta. TNF-alpha and IL-1beta regulated the expression of 92-kDa gelatinase by monocyte-derived macrophages at the pretranslational level. The results show that expression of 92-kDa gelatinase, but not its natural inhibitor TIMP-1, by human tissue-type macrophages is selectively up-regulated by proinflammatory cytokines; which suggests that these cells, when actually present in an inflammatory environment, will actively participate in the destruction of the extracellular matrix.  相似文献   

6.
Insoluble elastin was used as a substrate to characterize the peptide bond specificities of human (HME) and mouse macrophage elastase (MME) and to compare these enzymes with other mammalian metalloproteinases and serine elastases. New amino termini detected by protein sequence analysis in insoluble elastin following proteolytic digestion reveal the P'1 residues in the carboxyl-terminal direction from the scissile bond. The relative proportion of each amino acid in this position reflects the proteolytic preference of the elastolytic enzyme. The predominant amino acids detected by protein sequence analysis following cleavage of insoluble elastin with HME, MME, and 92-kDa gelatinase were Leu, Ile, Ala, Gly, and Val. HME and MME were similar in their substrate specificity and showed a stronger preference for Leu/Ile than did the 92-kDa enzyme. Fibroblast collagenase showed no activity toward elastin. The amino acid residues detected in insoluble elastin following hydrolysis with porcine pancreatic elastase and human neutrophil elastase were predominantly Gly and Ala, with lesser amounts of Val, Phe, Ile, and Leu. There were interesting specificity differences between the two enzymes, however. For both the serine and matrix metalloproteinases, catalysis of peptide bond cleavage in insoluble elastin was characterized by temperature effects and water requirements typical of common enzyme-catalyzed reactions, even those involving soluble substrates. In contrast to what has been observed for collagen, the energy requirements for elastolysis were not extraordinary, consistent with cleavage sites in elastin being readily accessible to enzymatic attack.  相似文献   

7.
Human trophoblast implantation is a highly regulated process of invasion that requires action of proteolytic enzymes to degrade extracellular matrix components of the endometrium. Among these enzymes, matrix metalloproteinases (MMPs) seem to be particularly important in this degradative process. We previously showed that gelatinase A is extensively expressed in vivo in the human placenta. A new MMP, MT-MMP-1 (membrane-type matrix metalloproteinase-1), which is thought to activate progelatinase A, has recently been described. In this study, we examined the expression of MT-MMP-1, by immunohistochemistry and in situ hybridization, in human placental bed biopsies taken during the first trimester of gestation. Human first trimester intermediate trophoblasts synthesized MT-MMP-1 mRNAs and the protein. The MT-MMP-1 pattern of distribution in placental beds was similar to that of gelatinase A, suggesting a pivotal role for MT-MMP-1 in placentation, perhaps by activating progelatinase A.  相似文献   

8.
9.
Matrix metalloproteinases (MMPs) are involved in remodelling extracellular matrix. Gelatinase B (MMP-9) is an inducible 92 kDa MMP expressed by neutrophils, microglia, and endothelial cells. Gelatinase A (MMP-2) is a 72 kDa MMP, constitutively expressed in brain. Elevated MMP activity has been linked to various pathologic conditions, and the therapeutic benefit of MMP inhibitors is under study in a few experimental models. Using gelatin zymography, we have compared activities of these MMPs in infarcted and matched non-infarcted cerebral tissue from eight subjects dying at intervals of less than 2 h to several years after a stroke. Gelatinase B activity was markedly elevated in the infarcted tissue at two days post-infarction, and remained elevated in cases dying months after the event. Increases in gelatinase A activity were subtle at 2-5 days; they were marked and significant in cases dying at 4 months and later. The findings indicate distinct temporal profiles of post-ischemic gelatinase activity in human brain, with earlier but equally persistent elevation in gelatinase B when compared to gelatinase A.  相似文献   

10.
Abdominal aortic aneurysms (AAA) are characterized by disruption and degradation of the elastic media, yet the elastolytic proteinases involved and their cellular sources are undefined. We examined if 92-kD gelatinase, an elastolytic matrix metalloproteinase, participates in the pathobiology of AAA. Gelatin zymography of conditioned medium from normal, atheroocclusive disease (AOD), or AAA tissues in organ culture showed that all tissues produced 72-kD gelatinase. AOD and AAA cultures also secreted 92-kD gelatinase, but significantly more enzyme was released from AAA tissues. ELISA confirmed that AAA tissues released approximately 2-fold more 92-kD gelatinase than AOD tissue and approximately 10-fold more than normal aorta. Phorbol ester induced a 5.3-fold increase in 92-kD gelatinase secretion by normal aorta and AOD and an 11.5-fold increase by AAA. By immunohistochemistry, 92-kD gelatinase was not detected in normal aorta and was only occasionally seen within the neointimal lesions of AOD tissue. In all AAA specimens, however, 92-kD gelatinase was readily localized to numerous macrophages in the media and at the adventitial-medial junction. The expression of 92-kD gelatinase mRNA by aneurysm-infiltrating macrophages was confirmed by in situ hybridization. These results demonstrate that diseased aortic tissues secrete greater amounts of gelatinolytic activity than normal aorta primarily due to increased production of 92-kD gelatinase. In addition, the localization of 92-kD gelatinase to macrophages in the damaged wall of aneurysmal aortas suggests that chronic release of this elastolytic metalloproteinase contributes to extracellular matrix degradation in AAA.  相似文献   

11.
Proteolytic enzymes with gelatinolytic activity in the synovial fluid (SF) of temporomandibular joint (TMJ) arthropathies were assayed by gelatin-impregnated gel enzymography. SF samples were collected from 10 TMJs in patients with closed lock (CL) condition and 5 TMJs from asymptomatic healthy volunteers. Two proteinases with gelatinolytic activities at 92 kDa and 72 kDa were detected in both the normal and the diseased TMJs. Also detected were weak bands at molecular weights of 83 kDa and 66 kDa. All of these proteinase activities were inhibited by EDTA and tissue inhibitor of metalloproteinases (TIMP), required Ca2+ for activation, and were detected with gelatin but not casein as substrate, suggesting that these enzymes were matrix metalloproteinases (MMPs). The 72 kDa and 66 kDa bands further reacted with anti-MMP-2 antibody by Western blot analysis, and the proteinases in the TMJ-SF could cleave type IV collagen in vitro without any activation. These four activities identified by enzymography were, therefore, identified as 92 kDa-gelatinase (proMMP-9), 83 kDa-gelatinase (active MMP-9), 72 kDa-gelatinase (proMMP-2) and 66 kDa-gelatinase (active MMP-2). Densitometric analyses of these bands revealed higher levels of the active form of MMP-9 in the CL patients compared to controls. These findings suggest that MMP-2 and -9 could be dominant proteinases in the TMJ-SF and possibly reflect TMJ pathology.  相似文献   

12.
Degradation of elastic fibers in the arterial walls is an important step in the development of atherosclerosis. To identify the enzyme(s) responsible for the elastinolysis, we have designed an ex vivo model of aortic explants cultured with or without THP-1 cells (human monocyte/macrophage-like cells). After culturing with THP-1 cells for 5 days elastic fibers of the aortic explants were fragmented and lost. With insoluble [3H] elastin as a substrate, elastin-degrading activity could be detected in the culture medium. Zymography in sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing alpha-elastin showed the presence of elastinolytic activity with 92 kd in the medium from the aortic tissue with THP-1 cell cultures, whereas the medium from the aortic tissue without THP-1 cells contained negligible elastinolytic activity. The activity was inhibited by ethylenediamine tetraacetic acid but not by phenylmethane sulfonyl fluoride, N-ethylmaleimide, or pepstatin A, indicating that the enzyme belongs to a class of metalloproteinases. In addition, destruction of the elastic fibers of the aortic explants cultured with THP-1 cells was completely inhibited only by metalloproteinase inhibitors. Immunoblot analyses demonstrated that the proteinase responsible for the elastinolytic activity is matrix metalloproteinase-9 (92-kd gelatinase/type IV collagenase = gelatinase B). Using immunocytochemistry, the metalloproteinase was localized in the THP-1 cells but not in the medial smooth muscle cells. These results suggest that matrix metalloproteinase-9 produced by THP-1 cells is of importance to degradation of elastic fibers in the aortic explants. The role of macrophages in the atherosclerosis is discussed with reference to elastinolysis of the arterial walls.  相似文献   

13.
The binding properties of the newly described tissue inhibitor of metalloproteinases-4 (TIMP-4) to progelatinase A and to the COOH-terminal hemopexin-like domain (C domain) of the enzyme were examined. We present evidence for the first time of a specific, high affinity interaction between TIMP-4 and the C domain of human gelatinase A and show that TIMP-4 binds both progelatinase A and the C domain in a similar manner to that of TIMP-2. Saturable binding of recombinant C domain to TIMP-4 and to TIMP-2 but not to TIMP-1 was demonstrated using a microwell protein binding assay. The recombinant collagen binding domain of gelatinase A, comprised of the three fibronectin type II-like repeats, did not bind to TIMP-4, indicating that binding is mediated selectively by the C domain. Binding to TIMP-4 was of high affinity with an apparent Kd of 1.7 x 10(-7) M but slightly weaker than that to TIMP-2 (apparent Kd of 0.66 x 10(-7) M). Affinity chromatography confirmed the TIMP-4-C domain interaction and also showed that the complex could not be disrupted by 1 M NaCl or 10% dimethyl sulfoxide, thereby further demonstrating the tight binding. To verify the biological significance of this interaction, binding of full-length progelatinase A to TIMP-4 was investigated. TIMP-4 and TIMP-2 but not TIMP-1 bound specifically to purified TIMP-2-free human recombinant full-length progelatinase A and to full-length rat proenzyme from the conditioned culture medium of ROS 17/2.8 cells. Preincubation of the C domain with TIMP-2 was found to reduce subsequent binding to TIMP-4 in a concentration-dependent manner. Competition between TIMP-2 and TIMP-4 for a common or overlapping binding sites on the gelatinase A C domain may occur; alternatively TIMP-2 may prevent the binding of TIMP-4 by steric hindrance or induction of a conformational change in the C domain. We propose that the binding of progelatinase A to TIMP-4 represents a third TIMP-progelatinase interaction in addition to that of progelatinase A with TIMP-2 and progelatinase B with TIMP-1 described previously. This new phenomenon may be of important physiological significance in modulating the cell surface activation of progelatinase A.  相似文献   

14.
15.
Gelatinase A, a member of the matrix metalloproteinase (MMP) family, is secreted possessing an 80 amino acid N-terminal propeptide that must be removed in order to generate the active enzyme. Purified progelatinase A was activated to 38% of maximum by a 6 h incubation at 37 degrees C with equimolar concentrations of trypsin-activated interstitial collagenase (another MMP). The increase in activity was accompanied by cleavage of the M(r) 72,000 progelatinase A to the M(r) 66,000 active enzyme that has Y81 as its N-terminus. At low concentrations, progelatinase A was processed via an inactive intermediate, suggesting that its activation is a biphasic process. This was confirmed by the action of collagenase on proE375-->A (a mutant of progelatinase A that cannot become active) because, in this instance, only an M(r) 68,000 species with L38 as the N-terminus was produced. The remaining propeptide amino acids to Y81 could be readily removed by added active gelatinase A, indicating that collagenase works by generating an intermediate that is susceptible to autolytic activation. Although relatively slow, the rate of activation could be increased approximately 10-fold by the addition of 100 micrograms/mL heparin. This binds to the C-terminal domain of collagenase and progelatinase A and presumably acts as a template that positions the reactants close to one another. Collagenase activated by trypsin retains 8 or 14 amino acids of its propeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Decidualization results in the remodeling of the extracellular matrix with the loss of collagen type I and the appearance of basement membrane matrix components. We have developed an in vitro assay system to study matrix metalloproteases during mouse decidualization. Uterine stroma, or decidua isolated from day 7.5 pregnant mice, were grown on a three-dimensional collagen type I matrix (Vitrogen). Gelatin zymography of conditioned media from these cultures showed constitutive secretion of processed forms of gelatinase A at 65, 62, and 59 kDa with 62 kDa predominating. Similar patterns of gelatinase A expression were obtained from tissue lysates of decidualizing uteri from days 5.5 to 7.5 of development. Cells cultured on Vitrogen, but not on plastic or matrix-coated dishes, were able to process the proenzyme to the 59 kDa form as observed in vivo. Only stroma cells cultured on a coating of collagen type I displayed the same increase in the 59 kDa zymogen. Decidua cells grown on Vitrogen attached and then migrated into aggregates that eventually penetrated the gel and spread as differentiated decidua on the underlying plastic. These preliminary results suggested that the in vitro assay system can be used to study the role of metalloproteases in matrix remodeling during decidualization.  相似文献   

17.
18.
Although matrix metalloproteinases (MMPs) are expressed in abundance in arterial aneurysms, their contribution to arterial wall degeneration, dilation, and rupture has not been determined. We investigated MMP function in a rat model of aneurysm associated with arterial dilation, elastin loss, medial invasion by mononuclear inflammatory cells, and MMP upregulation. Rupture was correlated with increased gelatinase B (MMP-9) and activated gelatinase A (MMP-2). Syngeneic rat smooth muscle cells retrovirally transfected with tissue inhibitor of matrix metalloproteinases (TIMP)-1 cDNA (LTSN) or with the vector alone as a control (LXSN) were seeded onto the luminal surface of the vessels. The seeding of LTSN cells resulted in TIMP-1 local overexpression. The seeding with LTSN cells, but not LXSN cells, decreased MMP-9, activated MMP-2 and 28-kD caseinase and elastase activity, preserved elastin in the media, and prevented aneurysmal degeneration and rupture. We conclude that MMP overexpression is responsible for aneurysmal degeneration and rupture in this rat model and that local pharmacological blockade might be a reasonable strategy for controlling the formation of aneurysms in humans.  相似文献   

19.
To study the cumulative influence of UV irradiations on skin matrix alterations, human skin fibroblasts were irradiated successively three-fold, at 24 h intervals, with UVA (3x5J/cm2), UVB (3x8mJ/cm2), UVA plus UVB (3x5J/cm2 and 3x8mJ/cm2) and the levels of 92 kDa gelatinase (pro-MMP9), 72 kDa gelatinase (pro-MMP2) and plasma-membrane elastase type protease were determined, following subsequent 24-h culture in 10% serum-containing medium. UV irradiations had only minor influence (1.4-fold increase for UVB) on secreted levels of pro-MMP2 and decreased the amount of plasma membrane elastase produced by cells. It did however, for UVA and UVB alone, induce a significant increase of 66 kDa activated MMP2 production: 2.5- and 1.7-fold respectively. Such enhancement was not observed when combined irradiations were administered. UV exposure possessed a much higher influence on pro-MMP9 secretion by dermal fibroblast enhancing enzyme levels by 2.5-, 6.5- and 5-fold for UVA, UVB and UVA+UVB, respectively.  相似文献   

20.
Wear debris of polyethylene prosthetic components is known to induce a host granulomatous reaction which recruits numerous macrophages and multinucleated giant cells. By releasing cellular mediators of a nonspecific inflammatory reaction, activated phagocytic cells are thought to play a key role in osteolysis leading to aseptic loosening of the prosthesis. Matrix metalloproteinases (MMPs) have been implicated in this destructive process by their ability to degrade extracellular matrix components of bone and adjacent connective tissue. To investigate the roles of gelatinase A, its activator MT1-MMP, and the MMP inhibitors TIMP-1 and TIMP-2 in aseptic loosening of polyethylene prostheses, immunohistochemistry (IHC) and in situ hybridization (ISH) were performed on periprosthetic pseudosynovial interface tissues. Gelatinase A and MT1-MMP were strongly detected immunohistochemically in macrophages and multinucleated giant cells in contact with polyethylene wear debris. In contrast to MT1-MMP, gelatinase A mRNAs were not found in phagocytic cells but in surrounding fibroblasts, thereby suggesting cooperation between macrophages and fibroblasts in this process. While TIMP-1 was expressed essentially in hyperplastic pseudosynoviocytes as assessed by IHC and ISH, TIMP-2, MT1-MMP, and gelatinase A were colocalized in phagocytic cells. These data support the concept of progelatinase A activation involving a trimolecular complex (MT1-MMP-TIMP-2-gelatinase A) mechanism. Thus, this study demonstrated that gelatinase A and its activator might contribute to the aseptic loosening of polyethylene prostheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号