首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of Essential Oils from Plants on Growth of Food Spoilage Yeasts   总被引:6,自引:0,他引:6  
Thirty-two essential oils from plants were screened for inhibitory effects on 13 food-spoilage and industrial yeasts. Of these, essential oils of allspice, cinnamon, clove, garlic, onion, oregano, savory, and thyme were most inhibitory. Oils were subsequently tested for their effects on biomass production and pseudomycelium formation of eight genera of yeasts. Garlic oil was a potent inhibitor of yeast growth at concentrations as low as 25 ppm. The oils of onion, oregano and thyme were also strongly inhibitory. Essential oils (100 ppm) had no effect on pseudomycelium production by Candida lipolytica. However, all eight essential oils delayed pseudomycelium formation by Hansenula anomala, whereas six oils stimulated pseudomycelium production by Lodderomyces elongisporus. Cinnamon and clove oils were clearly stimulatory to pseudomycelium production by Saccharomyces cerevisiae.  相似文献   

2.
Effects of clove, thyme, black pepper, pimenta, origanum, garlic, onion, and cinnamon oils on growth and germination of Clostridium botulinum types 33A, 40B, and 1623E were studied. At 200 ppm, ail oils highly inhibited growth of C. botulinum 33A, 40B, and 1623E. At 10 ppm, inhibitory activity of most oils diminished. By activity on C. botulinum growth, oils could be divided into three categories: (1) very active: cinnamon, origanum, and clove; (2) active: pimenta, and thyme; (3) least active: garlic, onion, and black pepper. Effectiveness on germination was quite different. At 150 and 200 ppm all oils totally prevented germination. At 10 ppm garlic and onion showed higher activity than the others. Spores of 33A were more sensitive than 40B and 1623E.  相似文献   

3.
An improved method of sample preparation was used in a microplate assay to evaluate the bactericidal activity levels of 96 essential oils and 23 oil compounds against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica obtained from food and clinical sources. Bactericidal activity (BA50) was defined as the percentage of the sample in the assay mixture that resulted in a 50% decrease in CFU relative to a buffer control. Twenty-seven oils and 12 compounds were active against all four species of bacteria. The oils that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.009) were marigold, ginger root, jasmine, patchouli, gardenia, cedarwood, carrot seed, celery seed, mugwort, spikenard, and orange bitter oils; those that were most active against E. coli (with BA50 values ranging from 0.046 to 0.14) were oregano, thyme, cinnamon, palmarosa, bay leaf, clove bud, lemon grass, and allspice oils; those that were most active against L monocytogenes (with BA50 values ranging from 0.057 to 0.092) were gardenia, cedarwood, bay leaf, clove bud, oregano, cinnamon, allspice, thyme, and patchouli oils; and those that were most active against S. enterica (with BA50 values ranging from 0.045 to 0.14) were thyme, oregano, cinnamon, clove bud, allspice, bay leaf, palmarosa, and marjoram oils. The oil compounds that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.034) were cinnamaldehyde, estragole, carvacrol, benzaldehyde, citral, thymol, eugenol, perillaldehyde, carvone R, and geranyl acetate; those that were most active against E. coli (with BA50 values ranging from 0.057 to 0.28) were carvacrol, cinnamaldehyde, thymol, eugenol, salicylaldehyde, geraniol, isoeugenol, citral, perillaldehyde, and estragole; those that were most active against L monocytogenes (with BA50 values ranging from 0.019 to 0.43) were cinnamaldehyde, eugenol, thymol, carvacrol, citral, geraniol, perillaldehyde, carvone S, estragole, and salicylaldehyde; and those that were most active against S. enterica (with BA50 values ranging from 0.034 to 0.21) were thymol, cinnamaldehyde, carvacrol, eugenol, salicylaldehyde, geraniol, isoeugenol, terpineol, perillaldehyde, and estragole. The possible significance of these results with regard to food microbiology is discussed.  相似文献   

4.
为了研究天然植物精油(百里香、丁香、肉桂)对霉变稻谷的抑菌效果,以5种稻谷霉变优势菌株为受试菌,以霉菌抑菌圈直径大小和最低抑菌浓度(MIC)为指标,通过混料设计方法建立复合精油抑菌模型,结合方差分析得到抑菌效果最佳的植物精油配比。研究结果表明,单一精油抑菌活性对亮白曲霉(A. candidus),杂色曲霉(A. versicolor)和聚多曲霉(A. sydowii)为肉桂精油>丁香精油>百里香精油;对稻黑孢霉(N. oryzae)为肉桂精油=丁香精油>百里精香油;对布罗克青霉菌(P. brocae)为丁香精油=百里香精油<肉桂精油。当肉桂精油:丁香精油:百里香精油的体积比为55.2%︰26.9%︰17.9%时,3种植物精油对5种菌株抑制效果最佳,复合抑制值大于90.9%。  相似文献   

5.
The effect of cinnamon, clove, oregano, palmarose and lemongrass oils on growth and FB1 production by three different isolates of F. proliferatum in irradiated maize grain at 0.995 and 0.950 aw and at 20 and 30 degrees C was evaluated. The five essential oils inhibited growth of F. proliferatum isolates at 0.995 aw at both temperatures, while at 0.950 aw only cinnamon, clove and oregano oils were effective in inhibiting growth of F. proliferatum at 20 degrees C and none of them at 30 degrees C. Cinnamon, oregano and palmarose oils had significant inhibitory effect on FB1 production by the three strains of F. proliferatum at 0.995 aw and both temperatures, while clove and lemongrass oils had only significant inhibitory effect at 30 degrees C. No differences were found using 500 or 1000 microg essential oil g(-1). At 0.950 aw, none of the essential oils had any significant effect on FB1 production. The results suggest that mainly cinnamon and oregano oils could be effective in controlling growth and FB1 production by F. proliferatum in maize under preharvest conditions.  相似文献   

6.
The mechanism of the antimicrobial action of Spanish oregano (Corydothymus capitatus), Chinese cinnamon (Cinnamomum cassia), and savory (Satureja montana) essential oils against cell membranes and walls of bacteria was studied by the measurement of the intracellular pH and ATP concentration, the release of cell constituents, and the electronic microscopy observations of the cells when these essential oils at their MICs were in contact with Escherichia coli O157:H7 and Listeria monocytogenes. E. coli O157:H7 and L. monocytogenes, two pathogenic foodborne bacteria, were used as gram-negative and gram-positive bacterial models, respectively. Treatment with these essential oils at their MICs affected the membrane integrity of bacteria and induced depletion of the intracellular ATP concentration. Spanish oregano and savory essential oils, however, induced more depletion than Chinese cinnamon oil. An increase of the extracellular ATP concentration was observed only when Spanish oregano and savory oils were in contact with E. coli O157:H7 and L. monocytogenes. Also, a significantly higher (P < or = 0.05) cell constituent release was observed in the supernatant when E. coli O157:H7 and L. monocytogenes cells were treated with Chinese cinnamon and Spanish oregano oils. Chinese cinnamon oil was more effective to reduce significantly the intracellular pH of E. coli O157:H7, whereas Chinese cinnamon and Spanish oregano decreased more significantly the intracellular pH of L. monocytogenes. Electronic microscopy observations revealed that the cell membrane of both treated bacteria was significantly damaged. These results suggest that the cytoplasmic membrane is involved in the toxic action of essential oils.  相似文献   

7.
《Food microbiology》2001,18(4):463-470
Investigations were carried out to assess the efficiency of four plant essential oils; bay, clove, cinnamon and thyme as natural food preservatives. The effect of the plant essential oils at concentrations of 0·1, 0·5 and 1% was studied in low-fat and full-fat soft cheese against Listeria monocytogenes and Salmonella enteritidis at 4° and 10°C respectively, over a 14-day period. The composition of the cheese was shown to be an important factor in determining the effectiveness of the plant essential oils. In the low-fat cheese, all four oils at 1% reduced L. monocytogenes to ≤1·0 log10cfu ml−1. In contrast, in the full-fat cheese, oil of clove was the only oil to achieve this reduction. Oil of thyme proved ineffective against S. enteritidis in the full-fat cheese, yet was equally as effective as the other three oils in the low-fat cheese, reducing S. enteritidis to ≤1·0 log10cfu ml−1from day 4 onwards. It is concluded that selected plant essential oils can act as potent inhibitors of L. monocytogenes and S. enteritidis in a food product.  相似文献   

8.
A critical review of the analytical methods employed for the determination of the relevant components of seasonings is presented. Where the available methods were inadequate, new ones have been devised. Particular emphasis has been placed on those methods of analysis that provide a rapid and sufficiently accurate appraisal of seasoning extracts and essential oils from seasonings under routine control laboratory conditions. At the same time, the margin of error of these methods has been determined. The individual seasoning extracts were assessed according to the following criteria: (1) essential oil — cardamom, laurel leaves, cloves, origanum (marjoram), sage, and thyme; (2) essential oil and nonvolatile lipids — dillseed, coriander, caraway, mace, nutmeg, pimento (allspice), and celery seed; (3) essential oil and/or pungent ingredients — capsicum, ginger, and pepper; (4) essential oil and/or coloring matter — turmeric (curcuma) and paprika; (5) essential oil and other components — garlic, onion, and cinnamon.  相似文献   

9.
The purpose of this study was to investigate the inhibitory effect of essential oils (thyme, clove and cinnamon) in vapour phase against the major fungal diseases of mango in vitro and in vivo. Thyme oil vapour (5 μL/Petri plate) completely inhibited the mycelial growth of Colletotrichum gloeosporioides and Lasiodiplodia theobromae under in vitro condition. Thyme oil vapour at 66.7 μL L?1 significantly reduced artificially inoculated C. gloeosporioides and L. theobromae in mangoes for 4 days. GC/MS analysis revealed thymol, eugenol and benzofuran, 3-methyl as the dominant compounds in thyme, clove and cinnamon oils, respectively. The activities of defence and antioxidant enzymes including peroxidase, chitinase, phenylalanine ammonia-lyase, β-1,3-glucanase, catalase and superoxide dismutase were enhanced by thyme oil (66.7 μL L?1) treatment and also help to maintain the phenolic content. Hence, postharvest thyme oil vapour treatment may prove to be an alternative means of controlling disease in mangoes.  相似文献   

10.
Mango fruit has high commercial value; however, major postharvest losses are encountered throughout the supply chain due to postharvest diseases. These results lead to the search for natural fungicide for postharvest diseases control. The antifungal effects of five essential oils (thyme, clove, cinnamon, anise and vitex) were assessed by disc volatilisation method. Thyme oil vapours at 5 μL per Petriplate, and clove and cinnamon oil at 8 μL per Petriplate showed 100% growth inhibition of mango pathogens in vitro. GC/MS analysis of essential oil showed thymol (23.88), o‐cymol (23.88) and terpinolene (23.88) as the major constituents of thyme oil. Clove and cinnamon oils contain 3‐allyl‐2‐methoxyphenol (37.42%) and benzofuran 3‐methyl (17.97%), respectively. Thyme oil as a fumigant at 66.7 μL L?1 showed a significant (P < 0.05) inhibition on postharvest pathogens of mango fruits stored at 25 °C for 6 days. Results of our study suggest the possibility of using thyme oil as an alternate natural fungicide to manage postharvest diseases in mango.  相似文献   

11.
ANTIFUNGAL ACTIVITIES OF THYME, CLOVE AND OREGANO ESSENTIAL OILS   总被引:1,自引:1,他引:1  
The antifungal potential of essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris) and clove (Syzygium aromaticum) was determined. To establish this antifungal potential, two molds related to food spoilage, Aspergillus niger and Aspergillus flavus, were selected. The agar dilution method was employed for the determination of antifungal activities. The three essential oils analyzed presented inhibitory effects on both molds tested. Oregano essential oil showed the highest inhibition of mold growth, followed by clove and thyme. Aspergillus flavus was more sensitive to thyme essential oil than A. niger. Clove essential oil was a stronger inhibitor against A. niger than against A. flavus.  相似文献   

12.
The antibacterial activity of 11 essential oils from aromatic plants against the strain INRA L2104 of the foodborne pathogen Bacillus cereus grown in carrot broth at 16 degrees C was studied. The quantity needed by the essential oils of nutmeg, mint, clove, oregano, cinnamon, sassafras, sage, thyme or rosemary to produce 14-1110% relative extension of the lag phase was determined. Total growth inhibition of bacterial spores was observed for some of the antimicrobial agents assayed. The addition of 5 microl cinnamon essential oil per 100 ml of broth in combination with refrigeration temperatures of 相似文献   

13.
Forty-five kinds of commonly used essential oils were employed to investigate the DPPH (1,1-diphenyl2-picrylhydrazyl) radical scavenging ability and total phenolic content of major chemical compositions. The free-radical scavenging ability and total phenolic content of cinnamon leaf and clove bud essential oils are the best among these essential oils. One-half milliliter of cinnamon leaf and clove bud essential oils (10 mg mL EtOH) are shown to be 96.74% and 96.12% of the DPPH (2.5ml, 1.52 × 10-4 M) free-radical scavenging ability, respectively. Their EC50 (effective concentrations) are 53 and 36 (μg mL-1). One milligram per milliliter of cinnamon leaf, clove bud, and thyme red essential oils were shown to be 420, 480, and 270 (mg g-1 of GAE) of total phenolic content, respectively. Eugenol in cinnamon leaf and clove bud essential oils (82.87% and 82.32%, respectively) were analyzed by GC-MS. It is clear that the amounts of the phenol compounds in essential oils and the DPPH free-radical scavenging ability are in direct proportion.  相似文献   

14.
Polylactide based films were formulated by incorporating polyethylene glycol, selected nanopowders (zinc oxide, silver-copper), and essential oils (cinnamon, garlic, and clove) by solvent casting method. Films were tested against three foodborne pathogens (one gram-positive and two gram-negative) for their antibacterial activity. The effectiveness of selected cinnamon oil-based film was ascertained by performing a challenge test with cheese as a food model. In vitro antibacterial efficacies of nanopowders and essential oils were also determined by the decimal reduction concentrations and the minimum bactericidal concentrations for those foodborne pathogens. It was observed that nanopowders exhibited considerably poorer decimal reduction concentrations and minimum bactericidal concentration values in comparison to the essential oils. Silver-copper alloy nanopowders exhibited lower decimal reduction concentrations and minimum bactericidal concentrations values than ZnO against tested pathogens whereas essential oils showed distinct antimicrobial effectiveness against all those pathogens with in vitro decimal reduction concentration values of 87–157 and 77–220 µg/mL for cinnamon and clove oils, respectively. Among the various formulations, it was observed that only essential oils (especially cinnamon and clove) incorporated films exhibited a significant antimicrobial activity against the selected microorganisms. These results indicate that the poor antibacterial activity of the nanopowders and the hydrophobicity of polylactide could be responsible for the ineffectiveness of nanopowders in polylactide based films. Furthermore, the challenge test indicated the polylactide/polyethylene glycol/cinnamon oil film was appropriate to inhibit the growth of L. monocytogenes and S. typhimurium on cheese up to 11 days at refrigerated storage.  相似文献   

15.
ABSTRACT:  We developed wine formulations containing plant essential oils and oil compounds effective against foodborne pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica. HPLC was used to determine maximum solubility of antimicrobials in wines as well as amounts of antimicrobials extracted by wines from commercial oregano and thyme leaves. Activity of essential oils (cinnamon, lemongrass, oregano, and thyme) and oil compounds (carvacrol, cinnamaldehyde, citral, and thymol) in wines were evaluated in terms of the percentage of the sample that resulted in a 50% decrease in the number of bacteria (BA50). The ranges of activities in wines (30 min BA50 values) against S. enterica/E. coli were carvacrol, 0.0059 to 0.010/0.011 to 0.021; oregano oils, 0.0079 to 0.014/0.022 to 0.031; cinnamaldehyde, 0.030 to 0.051/0.098 to 0.13; citral, 0.033 to 0.038/0.060 to 0.070; lemongrass oil, 0.053 to 0.066/0.059 to 0.071; cinnamon oil 0.038 to 0.057/0.066 to 0.098; thymol, 0.0086 to 0.010/0.016 to 0.022; and thyme oil, 0.0097 to 0.011/0.033 to 0.039. Detailed studies with carvacrol, the main component of oregano oil, showed that antibacterial activity was greater against S. enterica than against E. coli and that wine formulations exhibited high activities at low concentrations of added antimicrobials. The results suggest that wines containing essential oils/oil compounds, added or extracted from oregano or thyme leaves, could be used to reduce pathogens in food and other environments.  相似文献   

16.
The formation of stable free radicals upon reaction of the essential oils of 10 plant species with ultraviolet radiation and the superoxide radical anion, O2?, has been investigated by electron paramagnetic resonance (EPR) spectroscopy. Only the oils from oregano, summer savory and thyme produced EPR spectra and the results can be accounted for in terms of free radicals produced by the closely related phenolics, carvacrol and thymol. These observations are interpreted in terms of the known antioxidant properties of these molecules.  相似文献   

17.
ABSTRACT:  Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against  Escherichia coli  O157:H7,  Salmonella enterica,  and  Listeria monocytogenes  of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against  L. monocytogenes  than against the  S. enterica . The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.  相似文献   

18.
Fifty plant essential oils were examined for their antibacterial properties against 25 genera of bacteria. Four concentrations of each oil were tested using an agar diffusion technique. The ten most inhibitory oils were thyme, cinnamon, bay, clove, almond (bitter), lovage, pimento, marjoram, angelica and nutmeg. The most comprehensively inhibitory extracts were angelica (against 25 genera), bay (24), cinnamon (23), clove (23), thyme (23), almond (bitter) (22), marjoram (22), pimento (22), geranium (21) and lovage (20).  相似文献   

19.
The ability of cinnamon, clove, lemon grass, oregano and palmarosa essential oils to prevent growth of and fumonisin B1 (FB1) production by Fusarium verticillioides at different water activity (0.95 and 0.995 aw) and temperature (20 and 30 °C) levels in irradiated maize grain was evaluated. All the essential oils inhibited growth of F verticillioides isolates under all conditions tested, but FB1 production was only inhibited at 30 °C and 0.995 aw. Moreover, stimulation of toxin production was found under certain environmental conditions. None of the essential oils showed a significantly greater ability to inhibit FB1 production when compared with the others. At 1000 mg essential oil kg?1 maize the essential oils showed a greater inhibitory effect on growth of F verticillioides than at 500 mg kg?1, but there was no difference in FB1 production between the two levels of essential oil. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
BACKGROUND: An experiment was conducted to study the effects of boiling water, methanol and ethanol extracts (0, 0.25 and 0.50 mL) of seeds of Foeniculum vulgare (fennel), flower buds of Syzygium aromaticum (clove), bulbs of Allium sativum (garlic), bulbs of Allium cepa (onion) and roots of Zingiber officinalis (ginger) on rumen methanogenesis, fibrolytic enzyme activities and fermentation characteristics in vitro. RESULTS: Ethanol and methanol extracts of fennel, clove and garlic at 0.50 mL and clove at 0.25 mL inhibited (P < 0.05) methane production. Carboxymethylcellulase activity was reduced (P < 0.05) by ethanol and methanol extracts (0.50 mL) of fennel and clove (0.25 and 0.50 mL). The extracts of clove reduced (0.25 and 0.50 mL) xylanase and acetylesterase activities, and the fennel extract (0.50 mL) reduced (P < 0.05) xylanase activity. However, the extracts of garlic (0.50 mL) increased (P < 0.05) acetylesterase activity. Concentrations of volatile fatty acids were reduced (P < 0.05) by the extracts of garlic and onion. The extracts of garlic caused a decrease (P < 0.05) in acetate:propionate ratio (A:P) at 0.50 mL, whereas A:P was increased (P < 0.05) by the inclusion of 0.50 mL extracts of clove. Methanol and ethanol extracts of clove decreased (P < 0.05) in vitro organic matter degradability. Extracts (0.50 mL) of clove decreased (P < 0.05) the numbers of total protozoa, small entodiniomorphs and holotrichs, whereas extracts of onion, ginger and garlic enhanced (P < 0.05) protozoal numbers (both entodiniomorphs and holotrichs). CONCLUSION: Ethanol and methanol extracts of fennel and garlic have potential to inhibit rumen methanogenesis without adversely affecting rumen fermentation. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号