首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Fe3O4/poly (ε‐caprolactone)‐polyurethane (PCLU) shape memory nanocomposites were prepared by an in situ polymerization method. The thermal properties, magnetic properties, and shape memory properties of the nanocomposites were investigated systematically. The results showed that the Fe3O4 nanoparticles were homogeneously dispersed in the PCLU matrix, which ensured good shape memory properties of nanocomposites in both hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m?1/36.7 kA m?1). The nanocomposites started to recover near 40°C, which is slightly higher than body temperature. Thus, they would not change their deformed shape during the implanting process into the human body. Considering potential clinical applications, 45°C was chosen as shape recovery temperature which is slightly higher than 37°C, and the nanocomposites had high shape recovery rate at this temperature. With increasing content of Fe3O4 nanoparticles, the shape memory properties of the nanocomposites in an alternating magnetic field increased and the best recovery rate reached 97%, which proves that this kind of nanocomposites might be used as potential magnetic sensitive shape memory materials for biomedical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

2.
Cellulose nanocomposites containing high contents of Fe3O4 nanoparticles were successfully prepared with regenerated cellulose films as a matrix and mixture solutions of Fe2+/Fe3+ as precursors. The structure and properties of the magnetic nanocomposite films were investigated with X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. Fe3O4 nanoparticles as prepared were irregular spheres and were homogeneously dispersed in the cellulose matrix. With an increase in the concentration of precursors from 0.2 to 1.0 mol/L, the content of Fe3O4 nanoparticles in the dried nanocomposites increased from 12 to 39 wt %, and the particle diameter increased from 32 to 64 nm. The cellulose nanocomposite films demonstrated superparamagnetic behavior, and their saturation magnetizations were in the range 4.2–21.2 emu/g, which were related to the increase in Fe3O4 nanoparticle content. With increasing nanophase content, the nanocomposite films displayed significantly anisotropic magnetic properties in the parallel and perpendicular directions. This study provided a green and facile method for the preparation of biobased nanocomposite films with high nanophase content and excellent magnetic properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Two superparamagnetic and heat resistant xanthene based poly(ether-imide) nanocomposites were successfully synthesized. Field emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, thermal gravimetric analysis, vibrating sample magnetometer, Energy-dispersive X-ray spectroscopy and Fourier-transform infrared (FTIR) techniques were used for studying the morphology, crystalline phase, thermal stability and magnetization properties of the nanocomposites. The neat form of the corresponding poly(ether-imide) was also prepared by thermal imidization method and its structure was confirmed by FTIR, proton nuclear magnetic resonance (1H NMR), UV–Vis and photoluminescence (PL) spectroscopies. In order to investigate the effects of modifying the surface of Fe3O4 nanoparticles on thermal properties of the nanocomposites, the surface of Fe3O4 nanoparticles was coated with SiO2 and polysuccinimide (PSI), sequentially. Then, both the unmodified Fe3O4 and surface-modified Fe3O4 (Fe3O4@SiO2–PSI) nanoparticles were used as fillers for the polymer matrix. According to the results, the prepared nanocomposites were superparamagnetic and showed higher thermal stability in comparison to the neat poly(ether-imide). Furthermore, poly(ether-imide)/Fe3O4@SiO2–PSI (PIEN 10b) nanocomposite showed higher thermal stability and dispersed better in the polymer matrix [in comparison to poly(ether-imide)/Fe3O4 (PIEN 10 a)] due to the presence of imide groups and high hydroxyl content of the functional Fe3O4 nanoparticles which caused high interactions between poly(ether-imide) and functional Fe3O4. Furthermore, the presence of methyl, ether and bulky xanthene groups in the poly(ether-imide(backbone improved the solubility of the neat polymer in organic solvents. These properties can be very helpful for extending new applications of poly(ether-imide)s.  相似文献   

4.
A novel biodegradable magnetic‐sensitive shape memory poly(?‐caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with γ‐(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(?‐caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 °C hot water and alternating magnetic field (f = 60, 90 kHz, H = 38.7, 59.8 kA m?1). In hot water bath, all the samples had shape recovery rate (Rr) higher than 98% and shape fixed rate (Rf) nearly 100%. In alternating magnetic field, the Rr of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45652.  相似文献   

5.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Modified magnetite (Fe3O4) was easily mixed in a matrix of a polynorbornene‐based copolymer to realize a nanocomposite of organic polymer and inorganic metal oxide nanoparticles. The crystalline structure and the diameter of the modified Fe3O4 were evaluated with X‐ray diffraction and atomic force microscopy, revealing the crystalline Fe3O4 nanoparticles in the nanometer size range with an average diameter of 55 nm, a value close to that indicated by dynamic light scattering (68 nm). The transition temperature of the composite of 51 °C was determined using differential scanning calorimetry and the thermal stability and dynamic mechanical properties of the easily formed composite were investigated using thermogravimetry and dynamic mechanical analysis. The shape memory effect was evaluated in terms of shape recovery rate and speed, while thermally and electromagnetically triggered shape memory properties were documented. The recovery time triggered by Fe3O4 is 186 s. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
A novel magnetic semi‐IPN hydrogel based on xylan and poly(acrylic acid) was prepared, and the prepared hydrogels had excellent thermal stability, magnetic‐, and pH‐ sensitive properties. The physical‐chemical properties of the prepared hydrogels depended on the contents of xylan and Fe3O4 nanoparticles. The thermal stability of the hydrogels enhanced as the contents of xylan and Fe3O4 nanoparticles increased; however, the equilibrium swelling ratio decreased with increasing the contents of Fe3O4 nanoparticles and xylan. The interconnected pore channels were formed in the hydrogels and the amount of the channels increased with an increase in xylan content. The prepared hydrogels had a super‐paramagnetic property, and the magnetization increased with an increase in the content of Fe3O4 nanoparticles. The superior characteristics of the xylan/PAAc magnetic semi‐IPN hydrogel would expand its applications in drug delivery and magnetic separation aspects. POLYM. COMPOS., 36:2317–2325, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
Infrared (IR) guided missiles are real threat; they caused 90% of aircraft damage. Fluorocarbon polymer nanocomposite based on super-thermites can offer superior thermal signature to countermeasure IR guided missile seekers. This study reports on the sustainable fabrication of mono-dispersed colloidal Fe2O3 nanoparticles with 3 nm average particle size. Fe2O3 nanoparticles were dispersed in acetone for subsequent integration in fluorocarbon polymer. The impact of Fe2O3 content on thermal signature was evaluated using (FT-MIR 2–6 μm) spectrophotometer. Nanocomposite polymer with 8 wt% Fe2O3 offered an increase in the average intensity of α (2–3 μm) and β (4–5 μm) bands by 50 and 85% respectively to that of reference formulation. Quantification of stimulated emitting species in the combustion flame was conducted using ICT thermodynamic code. The developed nanothermite particles extended the primary reaction zone by 183%. Full discussions about combustion zones with associated exothermic chemical reactions have been represented.  相似文献   

9.
In this work, a novel water dispersible polyurethane (WDPU) was synthesized from the reaction of hydroxyl-terminated polybutadiene (HTPB), 2,2 bis(hydroxymethyl) propionic acid (DMPA), and 1,5-naphthalene diisocyanate (NDI) and its magnetic nanocomposites were prepared by incorporation of modified Fe3O4 by 3-aminopropyltriethoxysilane (Fe3O4@APTS) nanoparticles (0.5, 1.5, and 3 wt%) via in situ polymerization method. Use of NDI as a high melting point diisocyanate by having the rigid naphthalene structure imparts physical strength as well as thermal stability to the resulted polyurethane. The synthesized WDPU based on NDI was characterized by using Fourier transform infrared spectroscopy (FTIR) technique. In addition, the morphology, mechanical, and magnetic features of the prepared polyurethane nanocomposites were investigated by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), magnetic force microscopy (MFM), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMTA), and vibrating sample magnetometer (VSM) methods, respectively. Data from DLS experiment showed that the average particles size of the WDPU nanocomposites increased by increasing the nanoparticle contents in comparison with bare WDPU. AFM and MFM analyses indicated that the magnetic nanoparticles (MNPs) were well dispersed in the polyurethane matrices via the formation of covalent bonding between the functionalized magnetic nanoparticles and polymer chains. TGA results demonstrated that adding MNPs increased the temperature of the thermal degradation of the polyurethane nanocomposite. VSM analysis showed that the super paramagnetic behavior of the prepared nanocomposites depended on the Fe3O4@APTS nanoparticle content, as well.  相似文献   

10.
In this study, polystyrene and poly(vinyl chloride) particles were coated successfully with polythiophene in aqueous media. These nanocomposites were prepared in situ by polymerization of thiophene in the presence of FeCl3 as an oxidant and poly(vinyl pyrrolidone) as a surfactant. The effect of Fe2O3 nanoparticles on the characteristics of products such as thermal stability and morphology was investigated. The chemical structure, morphology, and thermal stability of these core‐shell nanocomposites were studied by Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, and thermogravimetric analysis. Thermal stability of the nanocomposites was compared and indicated that the thermal stability of polythiophene/polystyrene was better than the polythiophene/poly(vinyl chloride) nanocomposite. Also, the presence of Fe2O3 nanoparticles can drastically increase the thermal stability of polythiophene nanocomposites. J. VINYL ADDIT. TECHNOL. 20:212–217, 2014. © 2014 Society of Plastics Engineers  相似文献   

11.
Magnetic and conducting Fe3O4–polypyrrole nanoparticles with core‐shell structure were prepared in the presence of Fe3O4 magnetic fluid in aqueous solution containing sodium dodecylbenzenesulfonate (NaDS) as a surfactant and dopant. Both the conductivity and magnetization of the composites depend strongly on the Fe3O4 content and the doping degree. With increase of Fe3O4 content in the composite, the conductivity at room temperature decreases, but the saturated magnetization and coercive force increase. Transmission electron microscopy (TEM) images of Fe3O4 and Fe3O4–polypyrrole particles show almost spherical particles with diameters ranging from 20 to 30 and 30 to 40 nm, respectively. The thermal stability of Fe3O4–polypyrrole composites is higher than that of pure polypyrrole. Studies of IR, UV–visible and X‐ray photoelectron spectroscopy (XPS) spectra suggest that the increased thermal stability may be due to interactions between Fe3O4 particles and polypyrrole backbone. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
《Polymer Composites》2017,38(5):877-883
Magnetic polyurethane rigid foam nanocomposites were synthesized by incorporation of surface functionalized iron oxide nanoparticles with 3‐aminopropyltriethoxysilane (APTS). Magnetite nanoparticles (MNPs) and Fe3O4@APTS were synthesized via co‐precipitation and sol–gel methods, respectively. The main purpose of the surface modification of MNPs was the formation of hydrogen bond between amino groups of Fe3O4@APTS with the urethane groups to improve magnetic and thermal properties of the nanocomposites. The effect of different amounts of Fe3O4@APTS on the thermal and magnetic behavior of resultant nanocomposite was investigated and the optimum percentage of nanostructure in foam formulation was defined. POLYM. COMPOS., 38:877–883, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Electromagnetic interference shielding materials based on polyaniline/Mg0.6Cu0.4Fe2O4 ternary nanocomposites were prepared using in situ chemical oxidation polymerization method. The crystalline, structural and morphology analyses of the synthesized material were studied by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HR-TEM). The nanocomposites were examined by UV–Vis spectroscopy (UV–Vis), four probe resistivity, vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA) and vector network analyzer (VNA) for the optical, electrical, thermal, magnetic and shielding properties. XRD, FTIR and UV–Vis spectra analyses confirmed the formation of ferrites and polyaniline phases in the composites. The particle sizes of Mg0.6Cu0.4Fe2O4 are lying in the range of 15–40 nm verified by the HR-TEM. VSM study proved the presence of magnetic nanoparticles in the polyaniline matrix. TGA results revealed that the mixing of ferrites particles in polyaniline has improved its thermal stability. The nanocomposites are showing the significant shielding effectiveness value up to 32.8 dB in the X-band frequency range which makes them potential shielding material for electromagnetic interference shielding applications due to lightweight, good processability and low cost.  相似文献   

14.
During the last two decades, serious efforts have been directed towards the synthesis and coating magnetic nanoparticles for biomedical applications. Among many different types of polymeric coating materials that have been utilized in previous studies, we have selected polyvinyl alcohol (PVA). In this study, we report a novel type of magnetite nanocomposite-based PVA hydrogel. For this purpose, first, Fe3O4 nanoparticles were modified through hexamethylene diisocyanate (HMDI) and then PVA was modified by bromoacetyl bromide to produce bromoacetylated PVA. The modified PVA was cross-linked through various diamines such as ethylene-diamine, propylene-diamine and hexamethylenediamine. The prepared weak tridimensional PVA hydrogels were further reacted through unreacted hydroxyl groups with Fe3O4, modified by HMDI to form magnetite hard tridimensional hydrogels. The swelling behavior of the prepared magnetite nanocomposites were investigated and showed a fast initial swelling followed by a mild increase until attaining equilibrium. The structural, morphological, thermal and magnetic properties of the synthesized magnetite nanocomposites were confirmed by FTIR, thermal gravimetric analysis, vibrating sample magnetometer and scanning electron microscopy. The doxorubicin anti-tumor drug was loaded on a selected synthesized magnetic hydrogel and in vitro drug release studies were done in phosphate buffer solution in 37 °C.  相似文献   

15.
Graft copolymer nanocomposites based on cashew gum and poly(acrylamide) with different concentrations of nano‐iron‐oxide particles (Fe3O4) have been prepared by an in situ polymerization method. The characterization of graft copolymer composite was carried out by FTIR, UV, XRD, SEM, DSC, and TGA, electrical conductivity, and magnetic property [vibrational sample magnetometer (VSM)] measurements. The shift in the spectrum of UV and FTIR peaks shows the intermolecular interaction between metal oxide nanoparticles and the graft copolymer system. The spherically shaped particles observed from the SEM images clearly indicating the uniform dispersion of nanoparticles within the graft copolymer chain. The XRD studies revealed that the amorphous nature of the graft copolymer decreases by the addition of Fe3O4 nanoparticles. The glass transition temperature studied from DSC increases with increase in concentration of metal oxide nanoparticles. Thermal stability of composite was higher than the pure graft copolymer and thermal stability increases with increase in content of nanoparticles. Electrical properties such as AC conductivity and dielectric properties of the composites increased with increase in concentration of metal oxide nanoparticles. The magnetic property of graft copolymer nanocomposites shows ferromagnetic and supermagnetism and the saturation of magnetism linearly increased with increasing the Fe3O4 content in the polymer composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43496.  相似文献   

16.
Herein, the authors report the synthesis of electro-magnetic polyfuran/Fe3O4 nanocomposites using Fe3O4 magnetic nanoparticles of different content as nucleation sites via in situ chemical oxidation polymerization method. Surface, structural, morphological, thermal, electrical and magnetic properties of the nanocomposites were studied by FT-IR, UV-visible spectroscopies, XRD, FESEM, TGA, four probe, and VSM, respectively. The effect of Fe3O4 nanoparticles content on the electrical conductivity and magnetization of nanocomposites was studied. The obtained polyfuran and polyfuran/Fe3O4 nanocomposites were analyzed for their antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In addition, polyfuran/Fe3O4 nanocomposites have been investigated for application as electrochemical biosensor.  相似文献   

17.
In this study, we report about the preparation of magnetic polymer nanocomposites on the basis of isotactic polypropylene and magnetite Fe3O4 nanoparticles. The structure and composition of polymer nanocomposite materials have been studied by scanning electron microscopy, atomic force microscopy, and X-ray dispersive analysis. The magnetic properties of polymer nanocomposites based on PP+Fe3O4have been investigated. It is found that not significant adhesion and agglomeration of nanoparticles occur, by increasing the nanoparticle content in polymer matrix up to 40%, and therefore they act as single-domain nanoparticles. The samples of nanocomposites based on PP+Fe3O4, with up to 40% content of Fe3O4, exhibit superparamagnetic properties. It was also found out that the magnetic polymer nanocomposite material based on PP+Fe3O4 is able to absorb ultrahigh frequency electromagnetic waves in the frequencies range from 0.1 to 30?GHz. The increase in Fe3O4 concentration from 5 to 40% at the 400?µm thicknesses of the films leads to an increase in absorption of electromagnetic waves of high frequency from 15 to 22.7%.  相似文献   

18.
Stabilized and dispersed superparamagnetic porous nanogels based on sodium acrylate (AA‐Na) and acrylamide (AM) in a surfactant‐free aqueous system were synthesized via solution polymerization at room temperature. The formation of magnetite nanoparticles was confirmed and their properties characterized using Fourier transform infrared spectroscopy. Extensive characterization of the magnetic polymer particles using transmission electron microscopy (TEM), dynamic light scattering and zeta potential measurements revealed that Fe3O4 nanoparticles were incorporated into the shells of poly(AM/AA‐Na). The average particle size was 5–8 nm as determined from TEM. AM/AA‐Na nanoparticles with a diameter of about 11 nm were effectively assembled onto the negatively charged surface of the as‐synthesized Fe3O4 nanoparticles via electrostatic interaction. Crosslinked magnetite nanocomposites were prepared by in situ development of surface‐modified magnetite nanoparticles in an AM/AA‐Na hydrogel. Scanning electron microscopy was used to study the surface morphology of the prepared composites. The morphology, phase composition and crystallinity of the prepared nanocomposites were characterized. Atomic force microscopy and argon adsorption–desorption measurements of Fe3O4.AM/AA indicated that the architecture of the polymer network can be a hollow porous sphere or a solid phase, depending on the AA‐Na content. © 2013 Society of Chemical Industry  相似文献   

19.
The main goal in this work was to prepare and characterize a kind of novel superparamagnetic poly(ε-caprolactone)/Fe3O4@graphene oxide (PCL/Fe3O4@GO) nanocomposites via facile in situ polymerization. Fabrication procedure included two steps: (1) GO nanosheets were decorated with Fe3O4 nanoparticles by an inverse co-precipitation method, which resulted in the production of the magnetite/GO hybrid nanoparticles (Fe3O4@GO); (2) incorporation of Fe3O4@GO into PCL matrix through in situ polymerization afforded the magnetic nanocomposites (PCL/Fe3O4@GO). The microstructure, morphology, crystallization properties, thermal stability and magnetization properties of nanocomposites were investigated with various techniques in detail. Results of wide-angle X-ray diffraction showed that the incorporation of the Fe3O4@GO nanoparticles did not affect the crystal structure of PCL. Images of field emission scanning electron microscope and transmission electron microscopy showed Fe3O4@GO nanoparticles evenly spread over PCL/Fe3O4@GO nanocomposites. Differential scanning calorimeter and polar optical microscopy showed that the crystallization temperature increased and the spherulites size decreased by the presence of Fe3O4@GO nanoparticles in the nanocomposites due to the heterogeneous nucleation effect. Thermogravimetric analysis indicated that the addition of Fe3O4@GO nanoparticles reduced the thermal stability of PCL in the nanocomposites. The superparamagnetic behavior of the PCL/Fe3O4@GO nanocomposites was testified by the superconducting quantum interference device magnetometer analysis. The obtained superparamagnetic nanocomposites present potential applications in tissue engineering and targeted drug delivery.  相似文献   

20.
In this study, acrylic-based nanocomposites containing different contents of multi-walled carbon nanotubes (MWCNTs) and metal oxide nanoparticles (i.e., TiO2, CuO and Fe2O3) were fabricated by solvent mixing method. The thermal conductivity of these samples was evaluated. The results indicated that the thermal conductivity of all fabricated samples was significantly improved even at small loading of MWCNTs. It was found that the thermal conductivity was enhanced by increase in MWCNTs content up to 5 wt%. Similarly, the metal oxide nanoparticles caused up to 75 % increment in thermal conductivity at 1.5 wt% of their loading in acrylic film. Contrary to expectations, the thermal conductivity of acrylic film was more increased by nanometal oxides (i.e., TiO2, CuO and Fe2O3) than MWCNTs. The effect of hybridizing of nanometal oxide particles (1.5 wt%) and MWCNTs (1.5 wt%) on thermal conduction was investigated as well. It was found that hybridizing improved thermal conductivities by about 85, 94 and 97 % for Fe2O3, TiO2 and CuO, respectively. Finally, the effects of TiO2 pigment and CaCO3 extender on the thermal conductivity of acrylic polymer and nano-TiO2 acrylic composites were studied. It was found that TiO2 could increase considerably thermal conduction of its acrylic films and acrylic nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号