首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation and subsequent oxidation of nickel cathodes modified by impregnation with rare earth oxide were evaluated by surface and bulk analysis. The electrochemical behaviors of rare earth oxide impregnated nickel oxide cathodes were also evaluated in a molten 62 mol% Li2CO3+38 mol% K2CO3 eutectic at 650 °C by electrochemical impedance spectroscopy (EIS) as a function of rare earth oxide content and immersion time. The rare earth oxide-impregnated nickel cathodes show almost the similar porosity, pore size, and morphology to the reference nickel cathode. The stability tests of rare earth oxide-impregnated nickel oxide cathodes show that the rare earth oxide additive can dramatically reduce the solubility of nickel oxide in a eutectic carbonate mixture under the standard cathode gas condition. The impedance response of all cathode materials at different immersion time is characterized by the presence of depressed semicircles in the high frequency range changing over into the lines with the angles of which observed with the real axis differing 45° or 90° in the low frequency range. The experimental Nyquist plots can be well analyzed theoretically with a modified model based on the well-known Randles–Ershler equivalent circuit model. In the new model, the double layer capacity (Cd) is replaced by the parallel combination of Cd and b/ω; therefore, this circuit is modified to be the parallel combination of (Cd), b/ω, and the charge transfer resistance (Rct) based on the Randles–Ershler equivalent circuit, to take into consideration both the non-uniformity of electric field at the electrode/electrolyte interface owing to the roughness of electrode surface, and the variety of relaxation times with adsorbed species on the electrode surface. The impedance spectra for all cathode materials show important variations during the 200 h of immersion. The incorporation of lithium in its structure and the low dissolution of nickel oxide and rare earth oxide are responsible for these changes. After that, the structure reaches a stable state. The rare earth oxide-impregnated nickel oxide cathodes show higher catalytic activity for oxygen reduction and lower dissolution of nickel oxide than the pure nickel oxide cathode. The cathode material having 1.0 wt.% of rare earth oxide shows the optimum behavior.  相似文献   

2.
Seven lignins from different sources were pyrolysed (i) isothermally in vacuum over the temperature range 300–1300 °C and (ii) at a constant heating rate of 30 °C min?1 and a pressure of 0.1 MPa over the temperature range 150–900 °C. The mass fraction of each product—char, tar and gas species—and the elemental composition of the char and the tar were determined for the flash pyrolysis experiments. The evolution rates of the gas species and the tar versus the dynamic temperature of pyrolysis were determined for the constant heating rate pyrolysis experiments. Although the amount of each product species varied from lignin to lignin, the evolution rates were insensitive to the lignin source and the extraction process. To model the data, modifications were made to a recently developed model of coal pyrolysis. The model proved to be successful in simulating both the data from vacuum flash pyrolysis and constant heating rate pyrolysis of Iotech lignin.  相似文献   

3.
This paper presents a mathematical model of mass and charge transport and electrochemical reaction in porous composite cathodes for application in solid oxide fuel cells. The model describes a porous composite cathode as a continuum, and characterises charge and mass transfer and electrochemical kinetics using effective parameters (i.e. conductivity, diffusivity, exchange current) related to morphology and material properties by percolation theory. The model accounts for the distribution of morphological properties (i.e. porosity, tortuosity, density of contacts among particles) along cathode thickness, as experimentally observed on scanning electron microscope images of LSM/YSZ cathodes of varying thickness. This feature allows the model to reproduce the dependence of polarisation resistance on thickness, as determined by impedance spectroscopy on LSM/YSZ cathodes of varying thickness. Polarisation resistance in these cathodes is almost constant for thin cathodes (up to 10 μm thickness), it sharply decreases for intermediate thickness, to reach a minimum value for about 50 μm thickness, then it slightly increases in thicker cathodes.  相似文献   

4.
Mass transfer and electrochemical phenomena in the membrane electrode assembly (MEA) are the core components for modeling of solid‐oxide fuel cell (SOFC). The general MEA model is simply governed with the Stefan‐Maxwell equation for multicomponent gas diffusion, Ohm's law for the charge transfer and the current‐overpotential equation for the polarization calculation. However, it has obvious discrepancy at high‐fuel utilization or high‐current density. An advanced MEA model is introduced based on the diffusion equivalent circuit model. The main purpose is to correct the real‐gas concentrations at the triple‐phase boundary by assuming that the resistance of surface diffusion is in series with that of the gaseous bulk diffusion. Thus, it can obtain good prediction of cell performance in a wide range by avoiding the decrement of effective gas diffusivity via unreasonable increment of the electrode tortuosity in the general MEA model. The mathematical model has been validated in the cases of H2? H2O, CO? CO2 and H2? CO fuel system. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
6.
Oxygen transport across the cathode gas diffusion layer (GDL) in polymer electrolyte membrane (PEM) fuel cells was examined by varying the O2/N2 ratio and by varying the area of the GDL extending laterally from the gas flow channel under the bipolar plate (under the land). As the cathode is depleted of oxygen, the current density becomes limited by oxygen transport across the GDL. Oxygen depletion from O2/N2 mixtures limits catalyst utilization, especially under the land.The local current density with air fed PEM fuel cells falls to practically zero at lateral distances under the land more than 3 times the GDL thickness; on the other hand, catalyst utilization was not limited when the fuel cell cathode was fed with 100% oxygen. The ratio of GDL thickness to the extent of the land is thus critical to the effective utilization of the catalyst in an air fed PEM fuel cell. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

7.
The objective of this study was to develop a general diffusion model for describing mass transport phenomena and membrane diffusivities in alginate—polylysine (PLL) microcapsules. Good agreement between calculated and experimental protein concentration profiles was obtained based on a microcapsule model, consisting of a capsule membrane containing a partially impermeable alginate gel core with a decreasing gel pore size towards the centre of the capsule. The apparent size of the impermeable gel core and the capsule membrane permeability were directly dependent on the size of the diffusing protein and the alginate-PLL reaction time. The presence of this impermeable core may hinder the commercial and clinical use of these microcapsules in cell culture engineering and cell transplantation by affecting cell viability.  相似文献   

8.
This paper presents a mathematical model for the primary and secondary stages of biodegradation within domestic landfills. Quantitative relations are proposed to describe the rates of mass conversion between the major landfill chemicals and the effects of gas evolution. Particular attention is given to the methanogenic stage with the associated bacterial population being modelled explicitly. The processes are phrased in terms of a system of coupled differential equations, and examples of their numerical solution are given for cases in which spatial dependency is neglected. The main inadequacies of this model and the need for more appropriate data are indicated.  相似文献   

9.
The electrochemical reduction of NO in alkaline solutions was investigated at gas diffusion electrodes with various metal (Ru, Rh, lr, Pd and Pt) catalysts at various NO flow rates. Reduction currents are observed at potentials more negative than 0.95 V, which increase with the decrease in potential and also with increasing gas flow rate. The faradaic efficiencies of N2O formation decrease with decreasing NO flow rate and with decrease in potential. The faradaic efficiencies of N2 formation increase with decreasing flow rate and with decrease in potential. The reduction of NO to N2 at a flow rate of 5mlmin–1 occurs selectively at potentials more negative than 0.1V; the faradaic efficiency of N2 formation is approximately 95 at Pd catalysts.Electricity production and NO decomposition can be carried out simultaneously using an H2NO fuel cell reactor. The faradaic efficiency of N2 formation at a flow rate of 5mlmin–1 is approximately 80 at a cell voltage of 0.25 V.  相似文献   

10.
Mathematical modelling of a continuous fluidized‐bed reactor has been carried out for non‐catalytic gas–solid reactions. The two‐phase bubbling bed model has been used and the elutriation phenomenon for the fine particles has been investigated. The feed stream consisting particles with size distribution and reversible or irreversible first‐order kinetics can be treated by the model. The reduction behaviour of solid reactants was described by the grain model. A program was developed in MATLAB software for solving the governing equations at conditions of different temperatures and pressures. The model was validated using experimental data and simulation results available in the literature for the iron ore reduction with a gas mixture containing hydrogen [Srinivasan and Staffansson, Chem. Eng. Sci. 45(5), 1253–1265 (1990)]. The mathematical modelling was also used for predicting the extent of reaction for reduction of cobalt oxide by methane.  相似文献   

11.
A new concept of a solid oxide fuel cell (SOFC) using simultaneously the same electrode material at the anode and cathode sides with improved microstructure is proposed. We have found that La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) can be considered as a good candidate for such configuration, symmetrical fuel cells (SFCs), due to its enhanced electrochemical properties in both reducing and oxidising conditions. LSCM-based SFCs offer promising performances, e.g., 0.5 and 0.3 W cm−2 at 950 °C using H2 and CH4, respectively as fuels. Finally, the optimisation of the microstructure has been achieved via a novel facile procedure, using poly(methyl methacrylate) PMMA microspheres as templates.  相似文献   

12.
This paper is devoted to the numerical optimization of the dimensions of channels and current transfer ribs of bipolar plates as well as the thickness and porosity of gas diffusion layers. A mathematical model of the transfer processes in a PEM fuel cell has been developed for this purpose. The results are compared with experimental data. Recommendations of the values of operating parameters and some design requirements to increase PEM fuel cell efficiency are suggested.This paper was originally Presented at the CHISA Congress, Prague, August 2004.An erratum to this article can be found at  相似文献   

13.
14.
Lanthanum nickelates with Ruddlesden-Popper structure (La2NiO4, La3Ni2O7, and La4Ni3O10) and perovskite structure (LaNiO3) have attracted considerable attention due to their potential applications such as solid oxide fuel cells. Currently, the ionic and electronic conduction properties of La3Ni2O7, La4Ni3O10, and LaNiO3 are not fully understood because it is quite difficult to prepare their dense bodies required for the characterization. The difficulty arises from their narrow thermodynamic stable temperature and oxygen partial pressure ranges. In this study, we successfully obtained dense bodies of single-phase La3Ni2O7, La4Ni3O10, and LaNiO3 via a post-sintering oxidation process. First, dense pellets composed of fine-grain precursors La2NiO4 and NiO (~0.5 μm) were prepared by nitrate freeze-drying technique and low-temperature sintering at 1150°C-1225°C. Then they were converted into almost single-phase La3Ni2O7, La4Ni3O10, and LaNiO3 by high-temperature oxidation. La3Ni2O7 and La4Ni3O10 were obtained under an oxygen partial pressure of 1 bar at 1275°C and 1200°C-1250°C, respectively, while LaNiO3 was obtained under of 392 bar at 1250°C using hot isostatic pressing. The relative densities of the pellets exceeded 90%. With regard to their phase stability, decomposition was not detected at 600°C-1100°C in air for at least 100 hour despite their thermodynamic instability.  相似文献   

15.
16.
In this work the performance of NiO and a novel cathode material preoxidized nickel–niobium alloy were investigated. It is found that under a cathode atmosphere of p(CO2)/p(O2) = 0.67 atm/0.33 atm, the equilibrium solubility of nickel ions in (Li0.62, K0.38)2CO3 melt at 650 °C is about 17 ppm for the nickel oxide electrode and 8 ppm for the preoxidized nickel–niobium alloy electrode. The improvement in the stability of material in the melt may be attributed to the formation of a more dense nodular structure for the nickel–niobium alloy electrode when compared with a Ni electrode during preoxidation. The formation of a dense nodular structure for the nickel–niobium alloy electrode depresses the dissolution of NiO from the electrode into the carbonate melt and, accordingly, enhances the stability of the electrode material in the melt. The polarization performance of the NiO cathode was improved by electrodeposition of niobium. As far as the thermal stability and the polarization performance are concerned, the preoxidized nickel–niobium alloy can be considered as a candidate for the cathode material of MCFCs.  相似文献   

17.
Polymer electrolyte fuel cell (PEFC) electrodes were prepared by applying different porous gas diffusion half-layers (GDHLs) onto each face of a carbon cloth support, followed by the deposition of a catalyst layer onto one of these half-layers. The performance of PEFCs in H2/air operation using cathodes with GDHLs presenting different characteristics were compared. The best result was obtained using cathodes with GDHLs having polytetrafluorethylene (PTFE) contents of 30 wt % in the gas side and 15 wt % in the catalyst side. This behaviour was explained in terms of a better water management within the cell.  相似文献   

18.
Porous ceramics of Y2O3-stabilized ZrO2 (YSZ) were prepared by tape-casting methods using both pyrolyzable pore formers and NiO followed by acid leaching. The porosity of YSZ wafers increased in a regular manner with the mass of graphite or polymethyl methacrylate (PMMA) to between 60% and 75% porosity. SEM indicated that the shape of the pores in the final ceramic was related to the shape of the pore formers, so that the pore size and microstructure of YSZ wafers could be controlled by the choice of pore former. Dilatometry measurements showed that measurable shrinkage started at 1300 K, and a total shrinkage of 26% was observed, independent of the amount or type of pore former used. Temperature-programmed oxidation (TPO) measurements on the green tapes demonstrated that the binders and dispersants were combusted between 550 and 750 K, that PMMA decomposed to methyl methacrylate between 500 and 700 K, and that graphite combusted above 900 K. The porosity of YSZ ceramics prepared by acid leaching of nickel from NiO–YSZ, with 50 wt% NiO, was studied as a function of NiO and YSZ particle size. Significant changes in pore dimension were found when NiO particle size was changed.  相似文献   

19.
Li–Ni oxide mixtures with high lithium content are considered to be an alternative cathode material for molten carbonate fuel cells (MCFCs). The electrochemical behaviour of Li0.4Ni0.6O samples has been investigated in a Li–K carbonate melt at 650 °C by electrochemical impedance spectroscopy as a function of immersion time and O2 and CO2 partial pressure. The impedance spectra have been interpreted using a transmission line model that includes contact impedance between reactive particles. The Li0.4Ni0.6O powder particles show structural changes due to high lithium leakage and low nickel dissolution from the reactive surface to the electrolyte during the first 100 h of immersion. After this time, the structure seems to be stable. The partial pressures of O2 and CO2 affect the processes of oxygen reduction and Li–Ni oxide oxidation. X-ray diffraction and chemical analysis performed on samples before and after the electrochemical tests have confirmed that the lithium content decreases. SEM observations reveal a reduction in grain size after the electrochemical tests.  相似文献   

20.
《Ceramics International》2017,43(10):7647-7652
The purpose of this research is to develop interconnect and cathode materials for use in solid oxide fuel cells (SOFCs) which demonstrate desired properties of outstanding sintering properties, high electrical conductivity, and excellent chemical stability at high temperatures. Five different perovskite oxides of lanthanum in combination with chromium, iron, cobalt and nickel oxides powders, i.e. LaCr0.7Co0.1Fe0.1Ni0.1O3(LCr7CFN), LaCo0.7Cr0.1Fe0.1 Ni0.1O3(LCo7CFN), LaFe0.7Cr0.1Co0.1Ni0.1O3(LFe7CCN), LaNi0.7Cr0.1Co0.1Fe0.1O3(LNi7CCF), and LaCr0.25Co0.25Fe0.25Ni0.25O3(LCCFN), were synthesized through the Pechini method. XRD results show that all materials are in single phase, either rhombohedral or orthorhombic crystal structure. The resulting powders were able to be sintered to a high relative density at a temperature of 1400 °C for 2 h in air. The electrical conductivity of the sintered sample was measured and evaluated from 300 °C to 800 °C. The LCCFN sample appears to have the best combination of sintering property (approximate 94% relative density) and electrical conductivity (88.13 Scm−1 at 800 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号