首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An overview is given for the development of dielectric-resonator antennas. A detailed analysis and study of the hemispherical structure, excited by a coaxial probe or a slot aperture, is then given, using the dyadic Green's functions pertaining to an electric-current source or a magnetic-current source, located in a dielectric sphere. The integral equation for a hemispherical dielectric-resonator antenna (DRA), excited by either a coaxial probe or a slot aperture, is obtained. The integral equation is solved using the method of moments. The antenna characteristics, such as input impedance, radiation patterns, directivity, and efficiency, are computed numerically, around the resonant frequency of the TE111 mode (the HEM11 mode for cylindrical coordinates). The computed input impedance is compared with numerical and experimental data available in the literature  相似文献   

2.
利用同轴内导体延和为探针对印刷天线进行直接馈电是一种易于实现的馈电方式。本文介绍了一种分析单臂探针馈电印刷线天线的数值方法,该方法是基于并矢格林函数和互易定量求解电流积分方程的矩量法,适合于分析任意形状印刷线天线,首先给出描述电流分布的积分方程及其矩量法求解公式,在解得电流分布基础上,应用驻相法计算远区辐射场,通过计算与实验比较,验证了分析方法和计算程序的正确性,最后对一圆极化开口印刷圆环天线进行分析计算,表明了方法的实用价值。  相似文献   

3.
For the first time, the dielectric resonator antenna (DRA) is simultaneously used as a filtering device, named as the DRA filter (DRAF). The theory and design methodology of the DRAF are elucidated using the cylindrical DR. It was found that the operating frequency of the filter part can be made equal to, or different from, that of the antenna part. The return loss, input impedance, radiation patterns, and insertion loss of the DRAF are studied. To improve the insertion loss of the filter part, the DR is top-loaded by a metallic disk without significantly affecting the radiation efficiency of the antenna part. The disk, in addition, can be used to tune the frequency of the filter. It was found that the antenna and filter parts of the DRAF can be designed and tuned almost independently. A second-order DRAF is also designed in this paper. As the dual function DRAF is compact and cost effective, it should find applications in modern wireless communication systems.  相似文献   

4.
A hemispherical dielectric resonator antenna fed by a coaxial probe is studied both theoretically and experimentally. The Green's function for the evaluation of the input impedance is derived rigorously and expressed in a form convenient for numerical computations. The method of moments is used to obtain the probe current from which the input impedance of the DR antenna is calculated. Both delta gap and magnetic frill source models are considered. Moreover, the results using a reduced kernel as well as the exact kernel are presented. Both entire basis (EB) and piecewise sinusoidal (PWS) expansion modes are used and the results are compared. The effects of the probe length, feed position, and dielectric constant on the input impedance are discussed. Finally, the theoretical radiation patterns for the first three resonant modes (TE111, TM101, and TE221) of the DR antenna are presented  相似文献   

5.
Analysis of a dielectric resonator antenna (DRA) fed by a waveguide probe is presented. The probe is excited by the dominant mode of a waveguide and extends into the DRA through an aperture in the waveguide wall. The DRA has, in general, an arbitrary shape and resides on an infinite ground plane, which coincides with the exterior of the waveguide broad wall. A simple and efficient analysis procedure is implemented where the problem is divided into two parts. In the upper part, the input impedance of the DRA excited by a coaxial probe is obtained with respect to the feeding position on the ground plane independent of the waveguide part. Then the input impedance is transformed to the waveguide part as a concentrated load at the end of the probe connected to the waveguide wall. The effect of the wall thickness is taken into account by modeling the section of the probe passing through the waveguide wall as a coaxial cable transmission line supporting the transverse electromagnetic mode. Thus the DRA input impedance is transferred from the ground plane reference to the waveguide inner wall reference. Results obtained using the method of moments are compared with those obtained using the finite-difference time-domain method and exhibit very good agreement. The procedure is used to achieve a bandwidth of 50% for a stacked DRA excited by a waveguide probe.  相似文献   

6.
A soldered-through probe is used to excite the dielectric resonator antenna (DRA). A cylindrical ring DRA is used to demonstrate the feasibility of this excitation method. The return loss, radiation pattern, and antenna gain of the new configuration are studied  相似文献   

7.
A novel broadband stacked E-shaped patch antenna is proposed in this paper. The proposed antenna has an input impedance bandwidth of about 38.41%, better than the conventional E-shaped microstrip patch antenna, which has an input impedance bandwidth of 33.8%. Through the use of the washer on the probe of the stacked patch antenna, the input impedance bandwidth is improved further to 44.9%. The radiation patterns are found to be relatively constant throughout the whole band. Comparisons of these antennas are presented in this paper.  相似文献   

8.
In this paper, an annular-ring loaded (ARL) spherical-circular microstrip antenna is studied theoretically. The antenna is excited by a coaxial probe. The theoretical formulation is based on full-wave analysis in the spectral domain by using the vector Legendre transform and Galerkin's moment method is used for numerical calculation. Numerical results of the resonance frequencies, input impedance, voltage standing wave ratio (VSWR), and radiation characteristics are presented. It is shown that the impedance bandwidth of the spherical-circular microstrip antenna can be broadened by adding an annular-ring parasitic patch. By comparing to the single circular-patch case the spherical-circular microstrip antenna with an annular-ring parasitic patch has larger minor lobes and larger cross-polarization radiation  相似文献   

9.
A general integral equation technique is described for analysis of an arbitrarily shaped single-arm printed wire antenna excited through a vertical probe. A unified current integral equation is formulated on the basis of dyadic Green's functions and the reciprocity theorem. The current distribution is obtained by using a parametric moment method in which parameter segments are adopted for the printed wire instead of the commonly employed wire length segments. The radiation field solution involving both the printed antenna and vertical probe is also presented. The validity of the formulation is verified by comparing the numerically obtained input impedance and radiation patterns for a linear antenna and a meander antenna with measured data. A circular open loop and an Archimedian spiral are investigated to illustrate the applicability of the present technique  相似文献   

10.
Lo  H.Y. Leung  K.W. Luk  K.M. Yung  E.K.N. 《Electronics letters》1999,35(25):2164-2166
An aperture-coupled equilateral-triangular dielectric resonator antenna (DRA) of very high permittivity (ϵr=82) is investigated experimentally. The triangular DRA is more compact in size than rectangular and circular disk DRAs operating at the same frequency. The impedance matching, radiation patterns and antenna gain of the triangular DRA are presented  相似文献   

11.
The use of a single parasitic patch for circular polarization (CP) excitation of the dielectric resonator antenna (DRA) is investigated. For demonstration, the technique is applied to the conformal-strip fed hemispherical DRA, excited at the fundamental TE/sub 111/ mode. Using the Green's function approach, the integral equations for the conformal-strip and parasitic-patch currents are formulated by matching the appropriate boundary conditions. The equations are then solved using the method of moments (MoM). In using the MoM, both the rigorous and simplified current expansions are used for the parasitic patch, and their results are compared with each other. In each case, the impedance integrals are evaluated by virtue of newly obtained recurrence formulas and direct analytical integration. Hence, the results can be calculated very efficiently without the need for any numerical integration, which greatly facilitates the numerical implementation. The input impedance, axial ratio, and radiation patterns of the CP DRA are calculated, and the results are in good agreement with measurements.  相似文献   

12.
A new excitation scheme that employs a conducting conformal strip is proposed for dielectric resonator antenna (DRA) excitation. The new excitation scheme is successfully demonstrated by using a hemispherical DRA whose exact Green function is found using the mode-matching method. The moment method is used to solve the unknown strip current from which the input impedance is obtained. Novel recurrence formulas were obtained so that the impedance integrals are evaluated analytically. This solves the singularity problem of the Green function and substantially reduces the computation time. An experiment was carried out to verify the theory. The co- and cross-polarized field patterns are also shown. In addition, an experimental technique which deals with the problem of an air gap between the DRA and the ground plane is presented  相似文献   

13.
A broad-band U-slot rectangular patch antenna printed on a microwave substrate is investigated. The dielectric constant of the substrate is 2.33. The antenna is fed by a coaxial probe. The characteristics of the U-slot patch antenna are analyzed by the finite-difference time-domain (FDTD) method. Experimental results for the input impedance and radiation patterns are obtained and compared with numerical results. The maximum impedance bandwidth achieved is 27%, centered around 3.1 GHz, with good pattern characteristics  相似文献   

14.
A compact T-shaped dielectric resonator antenna (DRA) with two equilateral-triangle cross sections is investigated in this letter. The DRA is vertically placed on a finite ground plane and excited by a coaxial probe to provide broadband and conical radiation patterns. In order to examine the proposed design, simulations and measurements were employed to investigate the proposed antenna, and a good agreement between them was obtained. The proposed design produces an impedance bandwidth of more than 60% from 1.6 to 3.1GHz, which effectively covers several promising application bands in contemporary wireless communication systems, such as digital communication systems (DCS: 1710-1880MHz), personal communication systems (PCS: 1850-1990MHz), universal mobile telecommunication systems (UMTS: 1920-2170MHz), wireless local area networks (WLANs: 2.4-2.485GHz). Additionally, stable conical patterns were also obtained within the interest frequency band.  相似文献   

15.
The performance of a dual-band textile antenna integrated with an artificial magnetic conductor under bending and crumpling conditions is presented. Both input impedance and radiation patterns are investigated based on numerical and experimental methods at 2.45 and 5.8 GHz.  相似文献   

16.
A modified contour integral method coupled with segmentation method has been used, for the first time, to analyze both the Sierpinski fractal carpet (SFC) antennas of different orders and an SFC antenna with electromagnetic band gap (EBG) ground plane. The close agreement between the calculated and measured results for resonant frequencies and input return losses indicates that this technique can be used to accurately predict the impedance characteristic. A novel stacked microstrip Sierpinski carpet fractal antenna using the EBG ground plane is also presented. Comparing to an ordinary microstrip fractal antenna, which has a maximum bandwidth of approximately 2%, the proposed antenna has a higher input impedance bandwidth of nearly 9%. The radiation patterns of the proposed antenna are improved due to the removal of unwanted radiation caused by the surface wave. The experimental measurement results of the proposed antenna are presented in this paper.  相似文献   

17.
For the first time, the idea of using the dielectric resonator antenna (DRA) as an oscillator load, named as DRAO, is presented in this paper. Unlike the conventional dielectric resonator oscillator (DRO), where the DR was merely used as a resonator, the DR here serves as both the radiating and oscillating loads. In addition, a compact tri-function hollow DR that incorporates the packaging function to the above dual function is demonstrated. The design procedures of the dual- and tri-function DRAOs are discussed. For demonstration, the DRAOs are designed at 1.85 GHz, which is used in the popular personal communications system (PCS). The return losses, input impedances, antenna gains, signal spectrums, phase noise, and radiation patterns of the two DRAOs are presented. It is shown that the loaded QL factor of the DRA can be increased by internally embedding a compact metallic cavity to the DR. It is found that with a higher loaded QL factor, the phase noise of the antenna oscillator using the hollow DRA (tri-function DRAO) is better than that using a solid DRA (dual-function DRAO).  相似文献   

18.
A dielectric rod antenna (DRA) design that consists of two concentric dielectric cylinders and achieves more than 4:1 bandwidth is described. The new DRA is composed of a launcher section, followed by a waveguide section and ends in a radiation section. The utilization of two-layer structure avoids the excitation of high-order modes, thus extending the operational bandwidth. Properly chosen radii and dielectric constants of each layer in conjunction with a properly tapered radiation tip ensure frequency-insensitive radiation properties (gain and pattern) and stable phase center. The design example of a two-layer dual-polarization DRA presented in this paper operates from 2 to 8 GHz and produces symmetric radiation patterns with half-power beamwidth greater than 55deg. The current design is one of the most ideal antennas to be used as a near-field probe or reflector feed.  相似文献   

19.
Circularly polarized (CP) dielectric resonator antenna (DRA) subarrays have been numerically studied and experimentally verified. Elliptical CP DRA is used as the antenna element, which is excited by either a narrow slot or a probe. The elements are arranged in a 2 by 2 subarray configuration and are excited sequentially. In order to optimize the CP bandwidth, wideband feeding networks have been designed. Three different types of feeding network are studied; they are parallel feeding network, series feeding network and hybrid ring feeding network. For the CP DRA subarray with hybrid ring feeding network, the impedance matching bandwidth (S11<-10 dB) and 3-dB AR bandwidth achieved are 44% and 26% respectively  相似文献   

20.
高温超导体非线性特性对微带天线性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘淑芳  官伯然 《微波学报》2004,20(2):67-69,76
主要研究了高温超导(HTS)薄膜非线性特性对微带天线性能的影响。首先介绍了高温超导薄膜的非线性特性现象,以及产生该现象的可能的机理,在此基础上以矩形微带贴片天线为例,采用谱域矩量法对微带天线的辐射效率和输入阻抗进行了计算。结果表明输入功率增大到一定值时,将使天线的辐射效率下降,而且输入功率对输入阻抗也有一定的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号