首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weighted essentially non-oscillatory (WENO) finite difference schemes, developed by Liu et al. (Comput Phys 115(1):200–212, 1994) and improved by Jiang and Shu (Comput Phys 126(1):202–228, 1996), are one of the most popular methods to approximate the solutions of hyperbolic equations. But these schemes fail to provide maximal order accuracy near smooth extrema, where the first derivative of the solution becomes zero. Some authors have addressed this problem with different weight designs. In this paper we focus on the weights proposed by Yamaleev and Carpenter (J Comput Phys 228:4248–4272, 2009). They propose new weights to provide faster weight convergence than those presented in Borges et al. (J Comput Phys 227:3191–3211, 2008) and deduce some constraints on the weights parameters to guarantee that the WENO scheme has maximal order for sufficiently smooth solutions with an arbitrary number of vanishing derivatives. We analyze the scheme with the weights proposed in Yamaleev and Carpenter (J Comput Phys 228:4248–4272, 2009) and prove that near discontinuities it achieves worse orders than classical WENO schemes. In order to solve these accuracy problems, we define new weights, based on those proposed in Yamaleev and Carpenter (J Comput Phys 228:4248–4272, 2009), and get some constraints on the weights parameters to guarantee maximal order accuracy for the resulting schemes.  相似文献   

2.
Matthias Möller 《Computing》2013,95(5):425-448
This paper is concerned with the extension of the algebraic flux-correction (AFC) approach (Kuzmin in Computational fluid and solid mechanics, Elsevier, Amsterdam, pp 887–888, 2001; J Comput Phys 219:513–531, 2006; Comput Appl Math 218:79–87, 2008; J Comput Phys 228:2517–2534, 2009; Flux-corrected transport: principles, algorithms, and applications, 2nd edn. Springer, Berlin, pp 145–192, 2012; J Comput Appl Math 236:2317–2337, 2012; Kuzmin et al. in Comput Methods Appl Mech Eng 193:4915–4946, 2004; Int J Numer Methods Fluids 42:265–295, 2003; Kuzmin and Möller in Flux-corrected transport: principles, algorithms, and applications. Springer, Berlin, 2005; Kuzmin and Turek in J Comput Phys 175:525–558, 2002; J Comput Phys 198:131–158, 2004) to nonconforming finite element methods for the linear transport equation. Accurate nonoscillatory approximations to convection-dominated flows are obtained by stabilizing the continuous Galerkin method by solution-dependent artificial diffusion. Its magnitude is controlled by a flux limiter. This concept dates back to flux-corrected transport schemes. The unique feature of AFC is that all information is extracted from the system matrices which are manipulated to satisfy certain mathematical constraints. AFC schemes have been devised with conforming $P_1$ and $Q_1$ finite elements in mind but this is not a prerequisite. Here, we consider their extension to the nonconforming Crouzeix–Raviart element (Crouzeix and Raviart in RAIRO R3 7:33–76, 1973) on triangular meshes and its quadrilateral counterpart, the class of rotated bilinear Rannacher–Turek elements (Rannacher and Turek in Numer Methods PDEs 8:97–111, 1992). The underlying design principles of AFC schemes are shown to hold for (some variant of) both elements. However, numerical tests for a purely convective flow and a convection–diffusion problem demonstrate that flux-corrected solutions are overdiffusive for the Crouzeix–Raviart element. Good resolution of smooth and discontinuous profiles is attested to $Q_1^\mathrm{nc}$ approximations on quadrilateral meshes. A synthetic benchmark is used to quantify the artificial diffusion present in conforming and nonconforming high-resolution schemes of AFC-type. Finally, the implementation of efficient sparse matrix–vector multiplications is addressed.  相似文献   

3.
The cubed-sphere grid is a spherical grid made of six quasi-cartesian square-like patches. It was originally introduced in Sadourny (Mon Weather Rev 100:136–144, 1972). We extend to this grid the design of high-order finite-difference compact operators (Collatz, The numerical treatment of differential equations. Springer, Berlin, 1960; Lele, J Comput Phys 103:16–42, 1992). The present work is limitated to the design of a fourth-order accurate spherical gradient. The treatment at the interface of the six patches relies on a specific interpolation system which is based on using great circles in an essential way. The main interest of the approach is a fully symmetric treatment of the sphere. We numerically demonstrate the accuracy of the approximate gradient on several test problems, including the cosine-bell test-case of Williamson et al. (J Comput Phys 102:211–224, 1992) and a deformational test-case reported in Nair and Lauritzen (J Comput Phys 229:8868–8887, 2010).  相似文献   

4.
The weakly coupled WKB system captures high frequency wave dynamics in many applications. For such a system a level set method framework has been recently developed to compute multi-valued solutions to the Hamilton-Jacobi equation and evaluate position density accordingly. In this paper we propose two approaches for computing multi-valued quantities related to density, momentum as well as energy. Within this level set framework we show that physical observables evaluated in Jin et al. (J. Comput. Phys. 210(2):497–518, [2005]; J. Comput. Phys. 205(1):222–241, [2005]) are simply the superposition of their multi-valued correspondents. A series of numerical tests is performed to compute multi-valued quantities and validate the established superposition properties.  相似文献   

5.
The stochastic collocation method (Babu?ka et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions $O(1)$ to moderate dimensions $O(10)$ and to high dimensions $O(100)$ . The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.  相似文献   

6.
We develop a novel and simple theoretical model of time-interleaved sequential lamination micromixers that improves the model proposed by Nguyen and coworkers (Microfluid Nanofluid 1:373–375, 2005a, Lab Chip 5:1320–1326, b, J Phys Conf Ser 34:136–141, 2006) based on the Taylor–Aris dispersion theory. The Nguyen model takes into account the non uniform structure of the velocity profile through an effective dispersion coefficient. However, it is essentially a one-dimensional model that is not suitable to describe (i) neither the behavior of mixing occurring at short length-scales, and characterized by the growth of a mixing boundary layer near the channel walls, (ii) nor the exponential decay of the concentration field occurring at larger length-scales. The model we propose, which is based upon the theory of imaginary potential developed by Giona et?al. (J Fluid Mech 513:221–237, 2004, Europhys Lett 83:34001, 2008, J Fluid Mech 639:291–341, 2009a), is able to provide quantitative predictions on the evolution of the L 2-norm of the concentration fields as function of the axial coordinate ξ,?both for short and asymptotic lengthscales. The quantitative comparison with respect to the Nguyen model is illustrated and discussed. Finally, the coupling between parallel lamination and sequential segmentation is analyzed, and leads to unexpected and apparently counter-intuitive findings.  相似文献   

7.
We present a high-order accurate scheme for the reinitialization equation of Sussman et al.(J. Comput. Phys. 114:146–159, [1994]) that guarantees accurate computation of the interface’s curvatures in the context of level set methods. This scheme is an extension of the work of Russo and Smereka (J. Comput. Phys. 163:51–67, [2000]). We present numerical results in two and three spatial dimensions to demonstrate fourth-order accuracy for the reinitialized level set function, third-order accuracy for the normals and second-order accuracy for the interface’s mean curvature in the L 1- and L -norms. We also exploit the work of Min and Gibou (UCLA CAM Report (06-22), [2006]) to show second-order accurate scheme for the computation of the mean curvature on non-graded adaptive grids.  相似文献   

8.
High order path-conservative schemes have been developed for solving nonconservative hyperbolic systems in (Parés, SIAM J.?Numer. Anal. 44:300?C321, 2006; Castro et al., Math. Comput. 75:1103?C1134, 2006; J.?Sci. Comput. 39:67?C114, 2009). Recently, it has been observed in (Abgrall and Karni, J.?Comput. Phys. 229:2759?C2763, 2010) that this approach may have some computational issues and shortcomings. In this paper, a modification to the high order path-conservative scheme in (Castro et al., Math. Comput. 75:1103?C1134, 2006) is proposed to improve its computational performance and to overcome some of the shortcomings. This modification is based on the high order finite volume WENO scheme with subcell resolution and it uses an exact Riemann solver to catch the right paths at the discontinuities. An application to one-dimensional compressible two-medium flows of nonconservative or primitive Euler equations is carried out to show the effectiveness of this new approach.  相似文献   

9.
In this document, we present an alternative to the method introduced by Ebner (Pattern Recognit 60–67, 2003; J Parallel Distrib Comput 64(1):79–88, 2004; Color constancy using local color shifts, pp 276–287, 2004; Color Constancy, 2007; Mach Vis Appl 20(5):283–301, 2009) for computing the local space average color. We show that when the problem is framed as a linear system and the resulting series is solved, there is a solution based on LU decomposition that reduces the computing time by at least an order of magnitude.  相似文献   

10.
In this paper, we present a high-order moving mesh (HMM) kinetic scheme for compressible flow computations on unstructured meshes. To construct the scheme, we employ the frame of the remapping-free ALE-type kinetic method (Ni et al. in J Comput Phys 228:3154–3171, 2009) to get the discretization of compressible system. For the space accuracy, we use the weighted essential non-oscillatory reconstruction on the adaptive moving mesh from Tang and Tang (SIAM J Numer Anal 41:487–515 2003) to achieve time accuracy,we make use of the kinetic flux which includes time accurate integral, and thus obtain a HMM scheme. A number of numerical examples are given, especially an isentropic vortex problem to show the convergence order of the scheme. Numerical results demonstrate the accuracy and robustness of the scheme.  相似文献   

11.
Computational fluid dynamics simulations using the WENO method and level set method are applied to high Mach number nonrelativistic astrophysical jets, including the effects of radiative cooling. WENO methods introduced in Liu et al. (J. Comput. Phys., 115:200–212, 1994) have allowed us to simulate HH 1-2 astrophysical jets at Mach number much higher than Mach 80 (Ha et al. in J. Sci. Comput. 24:29–44, 2005). Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with the astrophysical images. Simulations of interaction between astrophysical jet and environment using level set methods are considered in this paper.  相似文献   

12.
This paper investigates the problem of the pth moment exponential stability for a class of stochastic recurrent neural networks with Markovian jump parameters. With the help of Lyapunov function, stochastic analysis technique, generalized Halanay inequality and Hardy inequality, some novel sufficient conditions on the pth moment exponential stability of the considered system are derived. The results obtained in this paper are completely new and complement and improve some of the previously known results (Liao and Mao, Stoch Anal Appl, 14:165–185, 1996; Wan and Sun, Phys Lett A, 343:306–318, 2005; Hu et al., Chao Solitions Fractals, 27:1006–1010, 2006; Sun and Cao, Nonlinear Anal Real, 8:1171–1185, 2007; Huang et al., Inf Sci, 178:2194–2203, 2008; Wang et al., Phys Lett A, 356:346–352, 2006; Peng and Liu, Neural Comput Appl, 20:543–547, 2011). Moreover, a numerical example is also provided to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

13.
A theoretical analysis tool, iterated optimal stopping, has been used as the basis of a numerical algorithm for American options under regime switching (Le and Wang in SIAM J Control Optim 48(8):5193–5213, 2010). Similar methods have also been proposed for American options under jump diffusion (Bayraktar and Xing in Math Methods Oper Res 70:505–525, 2009) and Asian options under jump diffusion (Bayraktar and Xing in Math Fin 21(1):117–143, 2011). An alternative method, local policy iteration, has been suggested in Huang et al. (SIAM J Sci Comput 33(5):2144–2168, 2011), and Salmi and Toivanen (Appl Numer Math 61:821–831, 2011). Worst case upper bounds on the convergence rates of these two methods suggest that local policy iteration should be preferred over iterated optimal stopping (Huang et al. in SIAM J Sci Comput 33(5):2144–2168, 2011). In this article, numerical tests are presented which indicate that the observed performance of these two methods is consistent with the worst case upper bounds. In addition, while these two methods seem quite different, we show that either one can be converted into the other by a simple rearrangement of two loops.  相似文献   

14.
In this paper, inspired by some types of $BL$ -algebra filters (deductive systems) introduced in Haveshki et al. (Soft Comput 10:657–664, 2006), Kondo and Dudek (Soft Comput 12:419–423, 2008) and Turunen (Arch Math Log 40:467–473, 2001), we defined residuated lattice versions of them and study them in connection with Van Gasse et al. (Inf Sci 180(16):3006–3020, 2010), Lianzhen and Kaitai (Inf Sci 177:5725–5738, 2007), Zhu and Xu (Inf Sci 180:3614–3632, 2010). Also we consider some relations between these filters and quotient residuated lattice that are constructed via these filters.  相似文献   

15.
Image segmentation methods with length regularized edge sets are known to have segments whose endpoints either terminate perpendicularly to the boundary of the domain, terminate at a triple junction where three segments connect, or terminate at a free endpoint where the segment does not connect to any other edges. However, level set based segmentation methods are only able to capture edge structures which contain the first two types of segments. In this work, we propose an extension to the level set based image segmentation method in order to detect free endpoint structures. By generalizing the curve representation used in Chan and Vese (Trans. Image Proces. 10(2):266–277, 2001; Int. J. Comput. Vis. 50(3):271–293, 2002) to also include free endpoint structures, we are able to segment a larger class of edge types. Since our model is formulated using the level set framework, the curve evolution inherits useful properties such as the ability to change its topology by splitting and merging. The numerical method is provided as well as experimental results on both synthetic and real images.  相似文献   

16.
Wavelet frame based models for image restoration have been extensively studied for the past decade (Chan et al. in SIAM J. Sci. Comput. 24(4):1408–1432, 2003; Cai et al. in Multiscale Model. Simul. 8(2):337–369, 2009; Elad et al. in Appl. Comput. Harmon. Anal. 19(3):340–358, 2005; Starck et al. in IEEE Trans. Image Process. 14(10):1570–1582, 2005; Shen in Proceedings of the international congress of mathematicians, vol. 4, pp. 2834–2863, 2010; Dong and Shen in IAS lecture notes series, Summer program on “The mathematics of image processing”, Park City Mathematics Institute, 2010). The success of wavelet frames in image restoration is mainly due to their capability of sparsely approximating piecewise smooth functions like images. Most of the wavelet frame based models designed in the past are based on the penalization of the ? 1 norm of wavelet frame coefficients, which, under certain conditions, is the right choice, as supported by theories of compressed sensing (Candes et al. in Appl. Comput. Harmon. Anal., 2010; Candes et al. in IEEE Trans. Inf. Theory 52(2):489–509, 2006; Donoho in IEEE Trans. Inf. Theory 52:1289–1306, 2006). However, the assumptions of compressed sensing may not be satisfied in practice (e.g. for image deblurring and CT image reconstruction). Recently in Zhang et al. (UCLA CAM Report, vol. 11-32, 2011), the authors propose to penalize the ? 0 “norm” of the wavelet frame coefficients instead, and they have demonstrated significant improvements of their method over some commonly used ? 1 minimization models in terms of quality of the recovered images. In this paper, we propose a new algorithm, called the mean doubly augmented Lagrangian (MDAL) method, for ? 0 minimizations based on the classical doubly augmented Lagrangian (DAL) method (Rockafellar in Math. Oper. Res. 97–116, 1976). Our numerical experiments show that the proposed MDAL method is not only more efficient than the method proposed by Zhang et al. (UCLA CAM Report, vol. 11-32, 2011), but can also generate recovered images with even higher quality. This study reassures the feasibility of using the ? 0 “norm” for image restoration problems.  相似文献   

17.
In this paper we present Fourier type error analysis on the recent four discontinuous Galerkin methods for diffusion equations, namely the direct discontinuous Galerkin (DDG) method (Liu and Yan in SIAM J. Numer. Anal. 47(1):475?C698, 2009); the DDG method with interface corrections (Liu and Yan in Commun. Comput. Phys. 8(3):541?C564, 2010); and the DDG method with symmetric structure (Vidden and Yan in SIAM J. Numer. Anal., 2011); and a DG method with nonsymmetric structure (Yan, A discontinuous Galerkin method for nonlinear diffusion problems with nonsymmetric structure, 2011). The Fourier type L 2 error analysis demonstrates the optimal convergence of the four DG methods with suitable numerical fluxes. The theoretical predicted errors agree well with the numerical results.  相似文献   

18.
19.
20.
We present several variants of the sunflower conjecture of Erd?s & Rado (J Lond Math Soc 35:85–90, 1960) and discuss the relations among them. We then show that two of these conjectures (if true) imply negative answers to the questions of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990) and Cohn et al. (2005) regarding possible approaches for obtaining fast matrix-multiplication algorithms. Specifically, we show that the Erd?s–Rado sunflower conjecture (if true) implies a negative answer to the “no three disjoint equivoluminous subsets” question of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990); we also formulate a “multicolored” sunflower conjecture in ${\mathbb{Z}_3^n}$ and show that (if true) it implies a negative answer to the “strong USP” conjecture of Cohn et al. (2005) (although it does not seem to impact a second conjecture in Cohn et al. (2005) or the viability of the general group-theoretic approach). A surprising consequence of our results is that the Coppersmith–Winograd conjecture actually implies the Cohn et al. conjecture. The multicolored sunflower conjecture in ${\mathbb{Z}_3^n}$ is a strengthening of the well-known (ordinary) sunflower conjecture in ${\mathbb{Z}_3^n}$ , and we show via our connection that a construction from Cohn et al. (2005) yields a lower bound of (2.51 . . .) n on the size of the largest multicolored 3-sunflower-free set, which beats the current best-known lower bound of (2.21 . . . ) n Edel (2004) on the size of the largest 3-sunflower-free set in ${\mathbb{Z}_3^n}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号