首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种应用遗传算法计算满足最小区域法的圆度误差的新思路,并对传统的遗传算法提出了一些改进,理论上可以获得全局最优解。仿真结果表明,该方法可以在变量的全局范围内有效、正确的评价圆度误差。  相似文献   

2.
A new method for roundness error evaluation using polar coordinate system, named as polar coordinate transform algorithm (PCTA), was presented in this paper. The algorithm first allocates a circular region around the least square circle center following certain rules, then calculates the polar radius for all measured points by translating polar coordinate system to each point in the region in turn, and finally obtains minimum circumscribed center point, maximum inscribed center point and minimum zone center point from comparing each polar radius relative to each polar coordinate system. With accurate center point, the algorithm could give more accurate roundness evaluation. In the paper, the process of PCTA was described in detail including the algorithm formula and flowchart. Theoretical calculation and testing results show that PCTA can evaluate roundness error effectually and accurately.  相似文献   

3.
Form error evaluation plays an important role in processing quality evaluation. Conicity error is evaluated as a typical example in this paper based on sequential quadratic programming (SQP) algorithm. The evaluation is carried out in three stages. Signed distance function from the measured points to conical surface is defined and the cone is located roughly by the method of traditional least-squares (LS) firstly; the fitted cone and the measured point coordinates are transformed to simplify the optimal mathematical model of conicity error evaluation secondly; and then optimization problem on conicity error evaluation satisfying the minimum zone criterion is solved by means of SQP algorithm and kinematic geometry, where approximate linear differential movement model of signed distance function is deduced in order to reduce the computational complexity. Experimental results show that the conicity error evaluation algorithm is more accurate, and has good robustness and high efficiency. The obtained conicity error is effective.  相似文献   

4.
通过对转子表面圆度误差的机理分析,建立了圆度误差的数学模型,并实验验证了数学模型的正确性。分析讨论了圆度误差对采用PID控制策略的电磁轴承系统的控制精度的影响。研究结果表明:圆度误差会使转子作周期振动,当圆度误差信号的频率等于系统固有频率时,振动幅值较大,在这个频率后随频率的增加振动幅值减小。  相似文献   

5.
A new strategy for circularity problems   总被引:6,自引:0,他引:6  
The evaluation of circularity based on the minimum zone criterion as a non-linear and non-convex problem, which requires a substantial amount of computational effort in general, is investigated. A new strategy for improving the computational efficiency by collecting data points at the farthest and nearest locations from current minimum radial separation center until all collected data points meet the optimum criterion is proposed. A number of mathematical models developed in this paper indicate that the minimum circularity can be determined by using a small number of critical data points. The validated results show that the proposed strategy offers an effective way to identify the critical data points at the early stage of computation and gives an efficient approach to solve the circularity problems, especially when the number of data point is large.  相似文献   

6.
以提高精密机床主轴回转误差的测量精度为研究目标,基于四点法矩阵算法,采用多圈重合式方法对主轴回转误差测量中的传感器输出数据进行处理。为提高传统遗传算法的收敛速度,降低优化结果对初始值的依赖性,对交叉和变异概率因子列式进行更新,并使用改进遗传算法对传感器安装角度和输出权值系数进行优化。使用改进遗传算法,收敛速率较传统遗传算法提高50%左右。利用多功能斜轨数控车床进行主轴径向回转误差测量及分离实验,分离后的标准芯棒形状误差值与标定值相比,误差在5%以内,且误差重复性低于5%。结果表明分离的结果精度较高,从而验证提出的算法的正确性和可行性。  相似文献   

7.
Minimum zone circle (MZC) method and least square circle (LSC) method are two most commonly used methods to evaluate roundness, but only the MZC method complies with the standard definition and can obtain the minimum roundness error value. The determination of the center of MZC is a nonlinear optimization problem which is suitable to be solved by particle swarm optimization (PSO) algorithms. In this paper, the standard PSO algorithm was introduced and theory analysis about the impact of value selection of some important parameters, such as inertia weight ω, on the algorithm’s stability and convergence was carried on so as to provide basis for giving these parameters better values. Furthermore, the superiority of making ω decrease linearly with iterations was verified through a computation experiment in terms of stability and accuracy, compared with the other three cases of ω = 1, 0.5, 0. Based on the analysis, the novel PSO algorithm, with ω decreasing linearly from 0.9 to 0.4 and the LSC center as the initial positions of the particles, is implemented to obtain MZC-based roundness errors of sampling points collected from circular section profiles by a coordinate measuring machine (CMM). By comparing the novel PSO–MZC results with the LSC-based results, it is concluded that the former are a little smaller than the latter, which verifies that the novel PSO algorithm is feasible to calculate roundness error and the fact that a LSC-based one is generally larger than a MZC-based result; the values of the two roundness errors are both related to sample size and increase with an increase in the sample size with a decreasing increment.  相似文献   

8.
刘楠嶓  腾瑛瑶  王伟  陈兴洲 《机械传动》2004,28(3):57-58,66
通过设计合理的球面与锥面的运动、尺寸参数,利用球面圆线中心自定位的特点,建立两球面圆线中心联线,替代传统锥顶中心线,使高精密磨削加工的圆度等级提高。  相似文献   

9.
According to the geometrical characteristics of cylindricity error, a method for cylindricity error evaluation using Geometry Optimization Searching Algorithm (GOSA) has been presented. The optimization method and linearization method and uniform sampling could not adopt in the algorithm. The principle of the algorithm is that a hexagon are collocated based on the reference points in the starting and the end measured section respectively, the radius value of all the measured points are calculated by the line between the vertexes of the hexagon in the starting and the end measured section as the ideal axes, the cylindricity error value of corresponding evaluation method (include minimum zone cylinder method (MZC), minimum circumscribed cylinder method (MCC) and maximum inscribed cylinder method (MIC)) are obtained according to compare, judgment and arranged hexagon repeatedly. The principle and step of using the algorithm to solve the cylindricity error is detailed described and the mathematical formula and program flowchart are given. The experimental results show that the cylindricity error can be evaluated effectively and exactly using this algorithm.  相似文献   

10.
基于遗传算法的球度误差评定   总被引:6,自引:0,他引:6  
首先对球度公差评定问题进行了综述.然后根据圆度公差的数学定义,引申提出球度公差最小区域条件下的评定模型,并给出遗传算法的适应度函数.随后给出算法实现中的中的关键问题.最后用实例对算法进行了检验,计算结果表明基于遗传算法的球度误差优化算法不仅符合最小区域的条件,而且易于理解和实现,能够获得全局最优解,保证了高精度、高效率.  相似文献   

11.
评定平面度误差的几何搜索逼近算法   总被引:1,自引:2,他引:1  
为了快速准确地评定机械零件的平面度误差,提出了基于几何搜索逼近的平面度误差最小区域评定算法.阐述了利用几何优化搜索算法求解平面度误差的过程和步骤,给出了数学计算公式.首先选择被测平面的3个边缘点为参考点构造辅助点、参考平面和辅助平面,然后以参考平面和辅助平面为假定理想平面,计算测量点至这些理想平面的距离极差;通过比较判断及改变参考点,构造新的辅助点、参考平面和辅助平面,最终实现平面度误差的最小区域评定.用提出的方法对一组测量数据进行了处理.结果表明,在终止搜索的条件为0.000 01 mm时,几何搜索逼近评定算法的结果分别比凸包法、计算几何法、最小二乘法、遗传算法和进化策略计算的结果减小了17.1、7.3、18.03、6.13和0.3μm.得到的数据显示该算法不仅能准确地得到最小区域解,而且计算结果有良好的稳定性,适合在平面度误差测量仪器和三坐标测量机上使用.  相似文献   

12.
一种利用坐标测量机实现圆度误差评价的方法   总被引:4,自引:2,他引:4  
针对直角坐标系下圆周截面形状误差评价,介绍了一种圆柱体截面圆度误差的测量与评定方法.在研究了圆度误差定义及测量方法的基础上,建立了基于三坐标测量机的最小外接圆圆度误差三维评测模型.利用双截面最小二乘拟合轴线调整坐标系位置,减少了位姿误差对测量结果的影响.对模型进行坐标系统一转换,使得变换后的模型能更适用于计算机数据处理.然后在坐标变换的前提下,提出了一种利用几何关系搜索最小外接圆圆心的方法,开发了相应的数据分析软件.实验和数据证明,此算法优于传统最小外接圆算法,实现了在直角坐标系下三坐标测量机对圆度误差的最小外接圆法评价.  相似文献   

13.
The minimum zone tolerance (MZT) meets the ISO 1101 definition of roundness error: it determines two concentric circles that contain the roundness profile and such that the difference in radii is the least possible value.  相似文献   

14.
评定二次曲面轮廓度误差的角度分割逼近法   总被引:1,自引:0,他引:1  
提出一种基于角度分割逼近算法和粒子群算法计算二次曲面轮廓度误差的最小区域评定方法来准确评定任意位姿的二次曲面轮廓度误差。首先,给出了能够实现角度分割逼近算法的两条前提假设;基于假设,给出了更合理的算法网格布局递推公式。根据曲面轮廓度误差的定义建立了误差评定的精确模型。然后,采用角度分割逼近法求取测点到拟合二次曲面轮廓的距离;通过粒子群算法,以所有的点与二次曲面距离中的最大值为适应度值拟合出二次曲面一般方程,并实现被测轮廓与理论轮廓位置的匹配。最后,采用上述方法对某抛物面天线进行了评定,并与参数分割法、SMX-Insight和最小二乘法进行比较。实验结果显示:该方法测得的天线轮廓度误差为0.659 8 mm,比其它方法准确。结论表明:基于角度分割算法能够更有效地评定任意位姿二次曲面轮廓度误差,计算准确、迅速,而且无需确定待分割区域。  相似文献   

15.
Data for evaluating circularity error can be obtained from coordinate measuring machines or form measuring instruments. In this article, appropriate methods based on computational geometric techniques have been developed to deal with coordinate measurement data and form data. The computational geometric concepts of convex hulls are used, and a new heuristic algorithm is suggested to arrive at the inner hull. Equi-Distant (Voronoi) and newly proposed Equi-Angular diagrams are employed for establishing the assessment features under different conditions. The algorithms developed in this article are implemented and validated with the simulated data and the data available in the literature.  相似文献   

16.
同轴度误差快速评定新算法   总被引:1,自引:0,他引:1  
针对空间最小二乘拟合同轴度基准轴线算法效率较低的问题,提出一种同轴度误差快速评定新算法。根据空间最小二乘法拟合直线的思想,利用两次投影法,先将n个基准要素的轮廓圆心正截面投影到xo Y面上,求取拟合的基准轴线与xo Y面的交点,再将n个被测实际要素轮廓正截面圆心投影到xo Y面上,将三维问题转化为二维问题,进行同轴度误差评定。并对一组数据进行了MATLAB仿真,结果证明该算法准确,便捷且计算速度大幅度提高。  相似文献   

17.
A study on analyzing the problem of the spherical form error   总被引:2,自引:0,他引:2  
Many methods to evaluate the form error of a sphere have been studied over the years. Most of these, such as the optimum methods, employed the approximate local solution to obtain the desired results. In this paper, three mathematical models are constructed to evaluate the solutions of the minimum circumscribed sphere, the maximum inscribed sphere, and the minimum zone sphere by directly resolving the simultaneous linear algebraic equations. Examples are given to verify that the model is admissible and reliable. These simple mathematical methods are verified to be useful for determining the exact solution.  相似文献   

18.
Profile error of free-form surface is evaluated in this paper based on sequential quadratic programming (SQP) algorithm. The optimal localization model is established with the minimum zone criterion firstly. Subsequently, the surface subdivision method or STL (STeror Lithography) model is used to compute the point-to-surface distance and the approximate linear differential movement model of signed distance is deduced to simplify the updating process of alignment parameters. Finally, the optimization model on profile error evaluation of free-form surface is solved with SQP algorithm. Simulation examples indicate that the results acquired by SQP method are closer to the ideal results than the other algorithms in the problem of solving transformation parameters. In addition, real part experiments show that the maximum distance between the measurement points and their corresponding closest points on the design model is shorter by using SQP-based algorithm. Lastly, the results obtained in the experiment of the workpiece with S form illustrate that the SQP-based profile error evaluation algorithm can dramatically reduce the iterations and keep the precision of result simultaneously. Furthermore, a simulation is conducted to test the robustness of the proposed method. In a word, this study purposes a new algorithm which is of high accuracy and less time-consuming.  相似文献   

19.
改进蜂群算法在平面度误差评定中的应用   总被引:4,自引:3,他引:4  
罗钧  王强  付丽 《光学精密工程》2012,20(2):422-430
为了准确快速评定平面度误差,提出将改进人工蜂群( MABC)算法用于平面度误差最小区域的评定.介绍了评定平面度误差的最小包容区域法及判别准则,并给出符合最小区域条件的平面度误差评定数学模型.叙述了MABC算法,该算法在基本人工蜂群算法( ABC)模型的基础上引入两个牵引蜂和禁忌搜索策略.阐述了算法的实现步骤,通过分析选用两个经典测试函数验证了MABC算法的有效性.最后,应用MABC算法对平面度误差进行评定,其计算结果符合最小条件.对一组测量数据的评定显示,MABC算法经过0.436 s可找到最优平面,比ABC算法节省0.411 s,其计算结果比最小二乘法和遗传算法的评定结果分别小18.03μm和6.13 μm.对由三坐标机测得的5组实例同样显示,MABC算法的计算精度比遗传算法和粒子群算法更有优势,最大相差0.9 μm.实验结果表明,MABC算法在优化效率、求解质量和稳定性上优于ABC算法,计算精度优于最小二乘法、遗传算法和粒子群算法,适用于形位误差测量仪器及三坐标测量机.  相似文献   

20.
There have been many studies to evaluate the form error of a circle. Most of them, such as the optimum methods and limacon model, employed the approximate solution to obtain the desired results. In this paper, three mathematical models depending on the method used to select the exact control points are constructed to evaluate the analytic solution of the minimum circumscribed circle, the maximum inscribed circle and the minimum zone circle by directly resolving the simultaneous linear algebraic equations. These new and simple mathematical methods are verified to be useful for determining the exact solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号