首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用铜模吹铸法制备出Zr44Ti11Ni10Cu10Be25块体非晶合金,并在真空扩散焊设备中与铝箔进行扩散焊接,研究了锆基非晶合金与Al箔进行超塑性扩散焊连接工艺及其连接界面的原子扩散情况。结果表明,元素的扩散情况与试样的变形量有关,但变形量又不完全影响元素的扩散,而是当变形量达到一定值时,温度越高,元素扩散程度越高。当温度达到713K、变形量达到26%时,元素的扩散程度最高。  相似文献   

2.
压焊     
《机械制造文摘》2008,(1):14-15
AZ31镁合金电阻点焊中焊接电流对接头组织和强度的影响;电阻点焊动态电阻的测量;高频脉冲变极性焊接工艺性能研究;扩散连接Al/Ni/0Cr18Ni9Ti复合材料的界面组织;Cr、Ni元素对Fe3Al/钢扩散焊界面组织结构的影响;真空扩散焊时在钢制工装与钛接魅区氧化物的还原;TC4合金线性摩擦焊摩擦时间与变形量的关系。  相似文献   

3.
压焊     
AZ31镁合金电阻点焊中焊接电流对接头组织和强度的影响;电阻点焊动态电阻的测量;高频脉冲变极性焊接工艺性能研究;扩散连接Al/Ni/0Cr18Ni9Ti复合材料的界面组织;Cr、Ni元素对Fe3Al/钢扩散焊界面组织结构的影响;真空扩散焊时在钢制工装与钛接魅区氧化物的还原;TC4合金线性摩擦焊摩擦时间与变形量的关系。  相似文献   

4.
用单辊甩带法制备出组分为(Al86Ni9La5)100-xZrx(x=0,3,5,7,10)的合金薄带。用X射线衍射(XRD)仪和示差扫描量热计(DSC)对这些薄带的非晶特性和热稳定性进行分析;在0.01mol/L的碱性NaCl溶液中,对(Al86Ni9La5)100-xZrx(x=0,3,5,7)甩带试样的电化学腐蚀行为进行研究。结果表明,(Al86Ni9La5)100-xZrx(x=0,3,5,7,10)的合金薄带中,组分为(Al86Ni9La5)95Zr5样品的非晶热稳定性最好,随着Zr含量的增加,(Al86Ni9La5)100-xZrx的抗电化学腐蚀性能增强。  相似文献   

5.
采用一种新的固相连接方法——刚性拘束热自压连接方法,对纯钛和Ti6Al4V(TC4)钛合金进行固相连接。通过不同加热时间刚性拘束热自压连接界面光学显微镜观察、元素成分能谱分析、显微硬度测试以及接头力学性能测试和断口观察,分析加热时间对纯钛和TC4钛合金异种连接接头界面焊合率、界面元素扩散和力学性能的影响。结果表明:随着加热时间的增加,连接界面高温停留时间、高温区材料体积、热挤压应力作用时间增加,促进界面两侧原子扩散,界面未焊合缺陷数量和尺寸减少,焊合质量提高。界面两侧发生显著的元素扩散现象,TC4合金中Al和V元素扩散至纯钛中,纯钛中的Ti元素扩散至TC4合金中,并随着加热时间增加,Al和V元素在纯钛中的扩散深度增加。加热时间对接头显微硬度分布影响不显著,但显著影响接头的强度和塑性,当加热时间增加至450 s时,可获得综合力学性能较好的纯钛和TC4合金异种材料连接接头。  相似文献   

6.
李波  李志远  熊建钢  邢丽 《电焊机》2007,37(3):68-70
采用传统摩擦焊焊接方法连接具有良好非晶形成能力的Zr65Cu12.5Al7.5Ni15(at%)块体非晶合金.微区X射线衍射结果显示,整个焊接接头保持了非晶特性,无晶化反应发生.对摩擦焊焊接方法成功连接块体非晶合金Zr65Cu12.5Al7.5Ni15的原因进行了分析.  相似文献   

7.
采用传统摩擦焊焊接方法连接具有良好非晶形成能力的Zr65Cu12.5Al7.5Ni15(at%)块体非晶合金。微区X射线衍射结果显示,整个焊接接头保持了非晶特性,无晶化反应发生。对摩擦焊焊接方法成功连接块体非晶合金Zr65Cu12.5Al7.5Ni15的原因进行了分析。  相似文献   

8.
对Zr-4合金与316-SS型不锈钢进行了直接真空扩散焊和以Ni为中间层的间接真空扩散焊对比试验,使用扫描电镜及能谱分析,研究了接头的显微组织、元素分布及力学性能。结果显示,直接真空扩散焊的接头界面处形成了一定厚度的反应层,在反应层中存在许多微裂纹。间接真空扩散焊的接头界面整体形貌较好,两侧元素均发生了充分扩散。Ni/316-SS扩散层形成了Fe-Ni固溶体,Ni/Zr-4反应层形成Ni5Zr、Ni Zr及Ni Zr2金属间化合物。随着加热温度、保温时间及压力的增大,接头的抗剪强度先增加,达到最大值后开始下降。  相似文献   

9.
Zr基非晶合金与铜的扩散连接研究   总被引:1,自引:0,他引:1  
利用Gleeble 3500热模拟试验机在添加和未添加扩散连接中间层条件下对Zr41.25Ti13.75Cu12.5Ni10Be22.5块体非晶合金与纯铜的扩散连接性进行了研究。实验结果表明,在两种条件下均获得了无裂纹和空洞的良好的连接界面。通过扫描能谱分析和电子探针分析在连接界面处观察到明显的元素扩散,但元素扩散距离较窄。非晶合金中晶化相的出现促进了界面处元素的扩散。  相似文献   

10.
利用X射线衍射(XRD)、透射电镜(TEM)、差示扫描量热(DSC)和室温压缩试验等分析手段,通过替代(Ti40Zr20Cu8Ni9Be18Al5)和掺杂[(Ti40Zr25Cu8Ni9Be18)0.95Al0.05)]两种元素添加方法,研究了5%(摩尔分数)Al元素对Ti40Zr25Cu8Ni9Be18非晶合金铸态组织、热稳定性和力学性能的影响。替代和掺杂的Al元素使直径为3mm的非晶合金棒状试样中分别析出了纳米晶和准晶。Al替代Zr使非晶合金薄带试样的过冷液相区从46K升高到50K,而以掺杂方式添加时却使其降低为31K。替代方式添加的Al元素使非晶合金的压缩断裂强度从1924MPa提高到2121MPa,但塑性应变从3.9%降低到了0.2%;而掺杂方式添加的Al元素使非晶合金强度降低为1475MPa,并呈现零塑性。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号