首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we address the H control analysis, the output feedback stabilization, and the output feedback H control synthesis problems for state-space symmetric systems. Using a particular solution of the Bounded Real Lemma for an open-loop symmetric system we obtain an explicit expression to compute the H norm of the system. For the output feedback stabilization problem we obtain an explicit parametrization of all asymptotically stabilizing control gains of state-space symmetric systems. For the H control synthesis problem we derive an explicit expression for the optimally achievable closed-loop H norm and the optimal control gains. Extension to robust and positive real control of such systems are also examined. These results are obtained from the linear matrix inequality formulations of the stabilization and the H control synthesis problems using simple matrix algebraic tools.  相似文献   

2.
In this paper, we improve on the results of robust stabilizability obtained by Kimura. We do this in a constructive way by using an H-approach, and exhibit an upper bound for the order of robust controllers.  相似文献   

3.
In this paper, we clarify a new relationship between invariant zeros of a generalized plant and the order reduction of H controllers by using linear matrix inequalities in both continuous-time and discrete-time cases. In contrast with our recent paper, where a relationship between an unstable transmission-zero structure and the H controller order reduction is initiated in a fundamental manner, results obtained in this paper are more flexible in two senses: assumptions that are made for the generalized plant are relaxed, and stable as well as unstable invariant zeros are characterized to obtain a reduced-order H controller.  相似文献   

4.
The lifting technique is a powerful tool for handling the periodically time-varying nature of sampled-data systems. Yet all known solutions of sampled-data H problems are limited to the case when the feedthrough part of the lifted system, , satisfies , where γ is the required H performance level. While this condition is always necessary in feedback control, it might be restrictive in signal processing applications, where some amount of delay or latency between measurement and estimation can be tolerated. In this paper, the sampled-data H fixed-lag smoothing problem with a smoothing lag of one sampling period is studied. The problem corresponds to the a-posteriori filtering problem in the lifted domain and is probably the simplest problem for which a smaller than performance level is achievable. The necessary and sufficient solvability conditions derived in the paper are compatible with those for the sampled-data filtering problem. This result extends the scope of applicability of the lifting technique and paves the way to the application of sampled-data methods in digital signal processing.  相似文献   

5.
A complete skew-Toeplitz-type solution to the two-block H problem for infinite-dimensional stable plants with rational weights is derived with a basis-free proof. The solution consists of one Riccati equation with a rank criterion for a transcendental function of a certain Hamiltonian. This gives a natural extension of the well-known formula for the one-block case. An example is given to illustrate the result.  相似文献   

6.
This paper presents the solution to min-max control problem arising when the matrix C1TC1 of the cost function in the standard H control problem (Doyle et al., 1989) is replaced by an arbitrary matrix Q 0. This difference is proved to be sufficient for results obtained in (Doyle et al., 1989) not to cover such the case. Their derivations essentially base on the cost function being H norm and can not be adjusted to deal with sign-indefinite quadratic form. With some sort of strict frequency condition assumed, state space technique is fruitful to obtain the necessary and sufficient conditions of the solvability of the problem. The solution is given by two Riccati equations and has some difference when compared to that of (Doyle et al., 1989).  相似文献   

7.
In this note, a simple proof is given for the Hamiltonian solution to the H optimal sensitivity for plants with arbitrary inner transfer function. The approach combines skew Toeplitz theory and state-space representations, and gives rise to a straightforward and basis-free methodology.  相似文献   

8.
This paper demonstrates how to use an asymptotically H-optimal controller to stabilize a second-order system subject to unknown disturbances such that the stability region does not vanish as the feedback gains increase. The high-gain feedback arises when one attempts to achieve the lowest achievable limit of the disturbance attenuation under the H design. This type of gain increase can cause the stability region to vanish if the disturbance contains nonlinear terms. The analysis using Lyapunov techniques derives a sufficient condition on the design parameters to prevent the stability region from vanishing. In addition to describing exact solutions for six different cases, the paper provides simulations to illustrate the results.  相似文献   

9.
Motivated by Zames' work on optimal sensitivity, it is shown that there exists in functional analysis a foundation, based upon the theory of representations of H, upon which results may be developed to enable a range of classical control problems to be placed in a modern control framework.  相似文献   

10.
In this note, the differential game and dissipation inequality are applied to the disturbance attenuation or H-control for linear systems with delayed state. Firstly, a simple sufficient condition on the existence of a γ-suboptimal H state feedback controller is given, which is independent of delay, and an observer-based dynamic output feedback solution is presented in terms of Riccati inequalities (or Riccati equations). Secondly, a sufficient condition on the existence of a delay-dependent state feedback is presented and the criterion is presented by a matrix inequality which can be solved by numerical methods.  相似文献   

11.
It is well known that two-block S/KS/T H problems in which the plant is weighted at the output tend to invert the plant in the controller. This paper shows that even four-block S/KS/T problems in which the plant is weighted at the input result in controllers which invert the plant. However, if a GS/T weighting scheme is used where the weight for the sensitivity includes the plant, the inversion is avoided. This GS/T scheme therefore is especially suited for ill-conditioned plants. An example confirms these results.  相似文献   

12.
This paper introduces, in precise mathematical terms, two properties (named, certainty equivalence and generalized certainty equivalence) that nonlinear minimax controller problems might possess. The certainty equivalence is a generalization of the one introduced earlier by Ba ar and Bernhard (1991) and Bernhard (1990), which applies to problems where the ‘worst-case disturbance’ may not be unique (but the worst-case state trajectory is). The generalized certainty equivalance, on the other hand, extends this to accomodate nonunique worst-case state trajectories, and leads to the constrollers that guarantee a bounded upper value for the underlying game. The paper also shows that for a large class of games (and under certain conditions), certainty-equivalent (as well as generalized certainty-equivalent) controllers admit (infinite-dimensional) estimator (Kalman-filter) structures, where the estimator gain depends on the state of the estimator.  相似文献   

13.
A sufficient condition for the existence of suboptimal stable stabilizing H controllers is given. By exploiting the free parameter in the parameterization of stabilizing controllers and using the chain scattering framework, we reformulate the H strong stabilization problem as an equivalent H optimization problem which can be solved via only one algebraic Riccati equation. A parameterization of all suboptimal stable stabilizing H controllers is also given.  相似文献   

14.
This paper studies the problem of characterization and computation of the H-norm of sampled-data systems using the time-invariant function space model via lifting. With the advantage of time-invariance, the treatment gives an eigenvalue-type characterization, first in the operator form in the frequency domain and then in the Hamiltonian-type finite-dimensional form. The form obtained can be adopted for use with the bisection algorithm for actual computation.  相似文献   

15.
In this note we show how to solve the H-optimal sensitivity problem for a SISO plant P(s) = P1(s)P2(s), given the solutions for P1(s), P2(s). This allows us to solve the problem for systems of the form ehsP0(s), where P0(s) is the transfer function of a stable, LTI, finite dimensional system.  相似文献   

16.
Recent papers have considered the problem of minimizing an entropy functional subject to an H performance constraint. Since the entropy is an upper bound for the H2 cost, there remains a gap between entropy minimization and H2 minimization. In this paper we consider a generalized cost functional involving both H2 and entropy aspects. This approach thus provides a means for optimizing H2 performance within H control design.  相似文献   

17.
This note gives necessary and sufficient conditions for solving a reasonable version of the nonlinear H control problem. The most objectionable hypothesis is elegant and holds in the linear case, but every possibly may not be forced for nonlinear systems. What we discover in distinction to Isidori and Astolfi (1992) and Ball et al. (1993) is that the key formula is not a (nonlinear) Riccati partial differential inequality, but a much more complicated inequality mixing partial derivatives and an approximation theoretic construction called the best approximation operator. This Chebeshev-Riccati inequality when specialized to the linear case gives the famous solution to the H control problem found in Doyle et al. (1989). While complicated the Chebeshev-Riccati inequality is (modulo a considerable number of hypotheses behind it) a solution to the nonlinear H control problem. It should serve as a rational basis for discovering new formulas and compromises. We follow the conventions of Ball et al. (1993) and this note adds directly to that paper.  相似文献   

18.
We characterize all solutions to a robustness optimization problem as the solutions of a two-parameter interpolation problem. From this characterization it is easy to show that an all-pass form solution always exists as long as a solution exists. We also study the possibility of using non-all-pass form solutions and by introducing other optimization objectives (motivated by improvements in disturbance rejection and robust stability) we search for the 'best' solution.  相似文献   

19.
We show that the sample complexity of qorst-case H-identification is of order n2, by proving that the minimal length of a fractional H-cover for Cn, regarded as the linear space of complex-valued sequences of length n, is of order n2. A unit vector u in is a fractional H-cover for Cn if for some

for all rh ε Cn, where is the z-transform of h. We also give similar results for real-valued sequences.  相似文献   

20.
For a linear time invariant system, the infinity-norm of the transfer function can be used as a measure of the gain of the system. This notion of system gain is ideally suited to the frequency domain design techniques such as H optimal control. Another measure of the gain of a system is the H2 norm, which is often associated with the LQG optimal control problem. The only known connection between these two norms is that, for discrete time transfer functions, the H2 norm is bounded by the H norm. It is shown in this paper that, given precise or certain partial knowledge of the poles of the transfer function, it is possible to obtain an upper bound of the H norm as a function of the H2 norm, both in the continuous and discrete time cases. It is also shown that, in continuous time, the H2 norm can be bounded by a function of the H norm and the bandwidth of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号