首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
High-throughput drilling of titanium alloys   总被引:3,自引:1,他引:3  
Experiments of high-throughput drilling of Ti–6Al–4V at 183 m/min cutting speed and 156 mm3/s material removal rate (MRR) using a 4 mm diameter WC–Co spiral point drill were conducted. The tool material and geometry and drilling process parameters, including cutting speed, feed, and fluid supply, were studied to evaluate the effect on drill life, thrust force, torque, energy, and burr formation. The tool wear mechanism, hole surface roughness, and chip light emission and morphology for high-throughput drilling were investigated. Supplying the cutting fluid via through-the-drill holes has proven to be a critical factor for drill life, which can be increased by 10 times compared to that of dry drilling at 183 m/min cutting speed and 0.051 mm/rev feed. Under the same MRR of 156 mm3/s with a doubled feed of 0.102 mm/rev (91 m/min cutting speed), over 200 holes can be drilled. The balance of cutting speed and feed is essential to achieve long drill life and good hole surface roughness. This study demonstrates that, using proper drilling process parameters, spiral point drill geometry, and fine-grained WC–Co tool material, the high-throughput drilling of Ti alloy is technically feasible.  相似文献   

2.
In order to extend tool life and improve quality of hole drilling in carbon composite materials, a better understanding of ‘one shot’ hole drilling is required. This paper describes the development of an empirical model of the maximum thrust force and torque produced during drilling of carbon fiber with a ‘one shot’ drill bit. Shaw's simplified equations are adapted in order to accommodate for tool wear and used to predict maximum thrust force and torque in the drilling of carbon composite with a ‘one shot’ drill bit. The mathematical model is dependent on the number of holes drilled previously, the geometry of the drill bit, the feed used and the thickness of the workpiece. The model presented here is verified by extensive experimental data.  相似文献   

3.
The thrust force and torque produced during drilling contain important information related to the quality of the hole and the wear of the drill bit [1]. In this paper, the force and torque produced during drilling of carbon fibre using a ‘one shot’ drill bit is investigated. The signals in the time domain were divided into stages and common problems and defects associated with each stage discussed. It is also shown how tool wear and thickness of the workpiece affect the thrust force and torque throughout the drilling process. The findings of this paper are used to develop a mathematical model of the maximum thrust force and torque as described on Part II of this paper and are a valuable reference for future optimisation of drilling carbon composites with a ‘oneshot’ drill bit.  相似文献   

4.
A combined numerical and experimental study is performed to analyze the feasibility of using heat pipe cooling in drilling applications. A parametric study is conducted to analyze the effect of different geometrical parameters expected for a heat pipe drill configuration, such as depth of the heat pipe within the drill, heat pipe diameter, heat flux input magnitude and length of the heat input zone. In this model, it is assumed that the drill is subjected to a static heat source which verifies the analysis and feasibility of using heat pipe cooling in drilling operations. The performance of the heat pipe drill model is approximated using a solid cylinder model of pure conduction. To validate the assumptions, numerical results are compared with experimental data that are based on the solid cylinder model. Both the numerical and experimental studies show that the use of a heat pipe in a drill can reduce the temperature field significantly. The results of this study can be used to define geometrical parameters for ‘optimal’ design and the setup for further analysis.  相似文献   

5.
Drilling hard rock with water jet is considered to be an efficient way to improve the work life of the cemented carbide blade. In this paper, cemented carbide material YG-6 is used on the drill bit in limestone drilling with water jet. Wear characteristics of the cemented carbide blades in drilling limestone with water jet is studied. Experiment results showed that the water jet pressure and nozzle diameter played an important influence on the wear rates of the cemented carbide blades in the drill bits. The wear rates of YG-6 blades decreased when the jet pressure increased. But the decline speed of wear rates was not even, it declined more and more slowly when the jet pressure upon 10 MPa. It was also showed that wear rates decrease with the increase of the nozzle diameter in the drill bit, for the bigger nozzle diameter could provide more impact force which could reduce the mechanical force on the YG-6 blades. SEM photographs were taken to characterize the wear mechanism of the cemented carbide blades in limestone drilling with water jet. Surface analysis demonstrated that cemented carbide blades in limestone drilling with water jet showed circular action of brittle fracture, grain pullout and polishing, which induced material removal process.  相似文献   

6.
In recent manufacturing processes, the small diameter hole drilling process is frequently used owing to its good characteristics. The drilling process can easily be adapted to wide variations in lot size, processing accuracy, processing spot patterns where holes are made, and so on. Many machine elements, which have small diameter holes, are manufactured using engineering plastics of superior material and machining properties. However, it is not easy to drill holes with a diameter smaller than 1 mm, in recent machining technology as well. In this report, 1-mm diameter holes are drilled on two engineering plastics sheets and their drilling accuracy is discussed.  相似文献   

7.
The miniaturization of component parts has advanced in the modern industrial product sector. Corresponding with this new wave, there is a strong demand for the establishment of minute-scale techniques to manufacture products with high quality involving the drilling of small holes. Non-traditional machining techniques such as electro discharge machining can be applied to make small holes. However, there is much practical value if small holes can be made by the traditional drilling process. In this paper, a method for estimating the drilled hole accuracy using a Fourier series analysis is proposed and this method is applied to small holes 1 mm in diameter drilled in mild steel for machine structure use. As a result, it is clarified that the bending rigidity of drill and the thinning of the drill point exert a large influence on the drilled hole accuracy.  相似文献   

8.
This two part paper presents a comprehensive exercise in modeling dynamics, kinematics and stability in drilling operations. While Part II focuses on the chatter stability of drilling in frequency domain, Part I presents a three-dimensional (3D) dynamic model of drilling which considers rigid body motion, and torsional–axial and lateral vibrations in drilling, and resulting hole formation. The model is used to investigate: (a) the mechanism of whirling vibrations, which occur due to lateral drill deflections; (b) lateral chatter vibrations; and (c) combined lateral and torsional–axial vibrations. Mechanistic cutting force models are used to accurately predict lateral forces, torque and thrust as functions of feedrate, radial depth of cut, drill geometry and vibrations. Grinding errors reflected on the drill geometry are considered in the model. A 3D workpiece, consisting of a cylindrical hole wall and a hole bottom surface, is fed to the rotating drill while the structural vibrations are excited by the cutting forces. The mechanism of whirling vibrations is explained, and the hole wall formation during whirling vibrations is investigated by imposing commonly observed whirling motion on the drill. The time domain model is used to predict the cutting forces and frequency content as well as the shape of the hole wall, and how it depends on the amplitude and frequency of the whirling vibration. The model is also used to predict regenerative, lateral chatter vibrations. The influence of pilot hole size, spindle speed and torsional–axial chatter on lateral vibrations is observed from experimental cutting forces, frequency spectra and shows good similarity with simulation results. The effect of the drill–hole surface contact during drilling is discussed by observing the discrepancies between the numerical model of the drilling process and experimental measurements.  相似文献   

9.
Precision drilling is a process where a close tolerance hole can be produced with a special drill bit without subsequent reaming. Producing a hole without reaming results in less overall processing time during hole preparation. Precision drilling is best accomplished by a robot with a computer controlled drilling end effector due to the high degree of process control required. Some aspects of the process, such as spindle speed, feed rate, and peck cycles, can easily be controlled by a computer controlled end effector. Other variables, such as drill bit wear, chipping, and point geometry variation, cannot be controlled with the end effector. These variables affect the diameter of the hole but cannot be detected unless the hole or the drill bit is manually inspected. It is not practical to stop the process and check the diameter after every hole. Therefore, a means to perform real time drilling process monitoring is required to detect if an oversized hole is being drilled. The primary objective of this research was to correlate the diameter of a hole drilled in steel with any acoustic emission (AE) signal measurement parameter. The secondary objective was to correlate drill bit lip height variation, which has a significant influence on the diameter of a hole, with any AE signal measurement parameter. The results of this study showed that acoustic emission could only be correlated to hole diameter variations if those variations were related to the lip height variations. However, AE energy and RMS were correlated to lip height variations under a wide variety of conditions.  相似文献   

10.
Drilling-induced delamination often occurs both at the entrance and the exit of the workpiece during drilling of composite material. Investigators have studied analytically and experimentally that delamination in drilling can be correlated to the thrust force of the drill. With a pre-drilled pilot hole, the delamination can be reduced significantly. Early reference reported models of drilling-induced delamination, however, the effect of chisel edge length and pilot hole diameter on delamination is rarely discussed. The optimal range of chisel edge length with respect to drill diameter is derived in this paper.  相似文献   

11.
The manufacturing of deep holes has to face problems to evacuate chips, especially for small diameters. Such problems induce frequent tool breakage and poor surface quality. The vibratory drilling enables the chip to be split into small elements thanks to the axial vibrations of the drill, self-maintained by the cutting energy. Thus, chips are easily evacuated from the hole. A specific tool holder with an adapted axial stiffness has been developed in order to investigate this drilling process. The cutting conditions are predetermined in order to lead to axial vibrations with a stable frequency and amplitude. During a period, the amplitude of the vibrations is higher than the feed per revolution, which enables the cutting edges to jump out of the work material. The vibrations are self-maintained and remain stable if some disturbances are absent or very limited such as the friction of the drill against the work material along its margins, the ploughing force induced by the chisel edge, the ploughing force induced by clearance face, etc. The objectives of this paper are (i) to model the dynamical behavior of the self-vibrating drilling head, the cutting and ploughing forces, and the material removal, (ii) to foresee with a numerical simulator the cutting conditions which generate good vibrations, (iii) to validate the numerical simulator with a experimental round of test. This work has also shown that the productivity of the drilling is improved by the use of the vibratory drilling. Deep hole (ratio deep/drill diameter >20) can be drilled with this new technology without any coolant and any retreat cycle with the same quality as a conventional drilling operation.  相似文献   

12.
A study of a modified drill point design with plane rake faces for drilling high-tensile steels is presented. A geometrical analysis has shown that the modified drill point design yields positive normal rake angle on the entire lips and point relieving in the vicinity of the chisel edge. This drill geometry can be expected to reduce the cutting forces and torque, and hence reduce the possible drill breakages when drilling high-tensile steels. An experimental study of drilling an ASSAB 4340 high-tensile steel with 7–13 mm titanium nitride (TiN) coated high-speed steel (HSS) drills has shown that the modified drills can reduce the thrust force by as much as 46.9%, as compared to the conventional twist drills under the corresponding cutting conditions, while the average reduction of torque is 13.2%. Drill-life tests have also been carried out and confirmed the superiority of the modified drills over the conventional twist drills. In some cases, the conventional drills were broken inside the workpiece, while the modified drills performed very well under the same cutting conditions. To mathematically predict the drilling performance and optimise the drilling process using the plane rake faced drills, predictive models for the cutting forces, torque and power will be developed in the second part of this investigation.  相似文献   

13.
Various cutting techniques are available to drill holes, but drilling is the most common way in secondary machining of composite materials owing to the need for structure joining. Twist drills are widely used in the industry to produce holes rapidly and economically. Since the twist drill has a chisel edge, increasing the length of a chisel edge will result in an increase in the thrust force generated. Whereas, a saw drill has no chisel edge; it utilizes the peripheral distribution of the thrust force for drilling. As a result, the saw drill can achieve better a machining quality in drilling composite laminates than twist drill. The deviation of cutting edge that occurs in saw drill would result in an increase of thrust force during drilling, causing delamination damage when drilling composite materials in particular. A comprehensive model concerning delamination induced by the thrust force of a deviation saw drill during drilling composite materials has been established in the present study. For a deviation saw drill, the critical thrust force that triggers delamination increases with increasing β. A lower feed rate has to be used with an increasing deviation saw drill in order to prevent delamination damage. The results agree with real industrial experience. A guide for avoiding the drill deviation during drill regrinding or drill wear has been proved analytically by the proposed model, especially when the deviation ratio (β) affects the critical thrust force. This approach can be extended to examine similar deviation effects of various drills.  相似文献   

14.
In drilling, the temperature of the cutting edges of a drill is measured using a two-color pyrometer with an optical fiber. A cemented carbide drill with a diameter of 10 mm is used as a cutting tool, and carbon steel, cast iron and aluminum die-cast alloy are used as work materials. The temperature distribution along the cutting edge of a drill is measured and the influence of spindle speed and feed rate on the tool temperature is investigated. The maximum tool temperature is observed during the drilling of carbon steel. The effect of oil mist supplied from oil holes in the drill on the tool temperature is examined and the result is compared to that in turning and end milling. The temperature reduction in oil mist turning is approximately 5%, while in oil mist end milling it is 10-15% and that in oil mist drilling is 20-25% compared to the temperature in dry cutting.  相似文献   

15.
The paper details experimental results when drilling small holes (1.5 mm diameter cemented carbide drills with varying end point and helix geometry) in thin quasi-isotropic, unbacked carbon fibre reinforced plastic (CFRP) laminate (typical cutting time 0.4 s/hole). The study utilised an L12 Taguchi fractional factorial orthogonal array with analysis of variance (ANOVA) employed to evaluate the effect of drill geometry and drilling conditions on tool life and hole quality. Main effects plots and percentage contribution ratios (PCR) are detailed in respect of response variables and process control factors. More conventionally, tool wear and cutting force data are plotted/tabulated, together with micrographs of hole entry/exit condition and internal hole damage. Drill geometry and feed rate in general had the most effect on measured outputs. Thrust force was typically below 100 N at test cessation; however, drill wear progression effectively doubled the magnitude of force from test outset. Entry and exit delamination factors (Fd) of 1.3 were achieved while the maximum number of drilled holes for a tool life criterion VBBmax of ≤100 μm was 2900 holes using a stepped, uncoated drill with a feed rate of 0.2 mm/rev.  相似文献   

16.
刘旦  闫占辉 《机床与液压》2020,48(3):104-106
硬脆材料在航空航天等领域的应用日益广泛,在硬脆材料上加工出微观表面形貌损伤少的小孔,一直是制造领域的技术难题之一。采用超声波磁流变复合钻削方法加工硬脆材料小孔,通过建立材料去除理论模型,揭示了超声波磁流变复合钻削材料去除规律。实验表明:超声波磁流变钻削硬脆材料小孔方法可较好地提高零件的表面加工质量。  相似文献   

17.
Regarding intersecting holes, the edges of cut are often difficult to access, as they are located inside the components. Hence it requires a lot of time and money to deburr them. In addition, burrs which come off in the later operation can lead to resultant damages. Examinations of intersecting holes showed that the effective exit surface angle, the angle between drill wall and exit surface, is crucial for burr formation. Based on the burr calculation for exit surfaces perpendicular to the drill axis, a method of calculation was developed out of the experimental results. By means of this calculation method the burr value g can be predicted for the short hole drilling of intersecting holes.  相似文献   

18.
High quality holes of diameters less than 145 μm are required for the manufacture of next generation diesel fuel injection nozzles for improved combustion efficiency and reduction of emission to the environment. The current practice of using electro-discharge machining (EDM) drilling of fuel injection nozzles is limited in terms of the hole size it can produce effectively and the length of time needed to drill. In addition, the tooling cost is high. This paper reports on an investigation into a sequential laser and EDM micro-drilling technique for the manufacture of next generation fuel injection nozzles. A laser-drilled pilot hole is rimmed out by EDM drilling. It was found that this hybrid process has eliminated the problems of recast and heat affected zones typically associated with the laser drilling process. The new process has enabled a 70% reduction in total drilling time compared to standard EDM drilling as less material is removed by the EDM. The quality of the holes is as good as direct EDM drilling, thus eliminating the need for re-certification of the drilling process. Various combinations of laser/EDM drilling conditions have been examined. Optimum diameters for the pilot hole and the EDM electrode have been identified for a particular diameter of fuel injection nozzle, giving the minimum total drilling time and the best quality holes. A special system was designed to enable the alignment of nozzles to be controlled to within ± 20 μm. The technique has enabled valuable cost savings and increase in production capacity for next generation fuel injection nozzle manufacture.  相似文献   

19.
基于和田玉特殊的物理性能,采用金刚砂钻头和高速钢麻花钻在附加超声波振动和不附加超声波振动的条件下进行了和田青玉的钻削试验,在加工工件的刀具损坏、出口毛刺、孔表面微观质量3个方面进行对比分析,超声振动波钻削能获得更好的加工质量和效率,并能减少刀具的磨损和破坏,为和田玉精密加工提供了一种新的深孔加工工艺方法。  相似文献   

20.
Drilling of pre-sintered cemented carbide parts is a challenging task due to the high hardness and abrasive nature of the WC grains. This operation is commonly done using uncoated cemented carbide drill bits but the tool life is very limited requiring tool re-sharpening after a few holes. A solution for the improvement of the tool performance is here exploited by the use of nanocrystalline diamond (NCD) films as high abrasion resistant coatings. These coatings were grown in a hot filament chemical vapor deposition (HFCVD) reactor. Filament temperatures in the range of 1940-1980 °C were crucial to obtain highly adherent and very uniform coatings at the cutting edge and on the surfaces of the flutes. The performance of the coated tools was evaluated in through-hole drilling of a pre-sintered cemented carbide showing outstanding cutting efficiency when compared to that of an uncoated tool: maximal 940 mm/min infeed rates (app. 1 s to drill 17 mm) instead of 20 mm/min for the latter; absence of tool wear in contrast to a flank wear of about 50 μm in the uncoated tool after only 4 holes; hole edge integrity even at the highest infeed rates while grain decohesion at the hole edge takes place when using bare drill bits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号