首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine field trials involving the application of35S-labelled gypsum fertilizer to various soil—pasture systems were conducted on five different soil types belonging to the New Zealand recent (Entisol) and yellow-brown earth (Inceptisol) soil groups. After application to the soil, the fertilizer sulphur (S) was converted rapidly into organic forms by microbial immobilization. Within 34 to 75 days from the time of S fertilizer application, 17 to 40% of the applied S was in organic forms in the topsoil (0–15 cm depth). A higher rate of incorporation occurred in improved pasture sites compared to unimproved sites. A lower rate of fertilizer S application enhanced the extent of organic incorporation while a difference in the time of fertilizer application reduced the fertilizer conversion. At most sites, leaching of fertilizer S beyond the topsoil was most important at two months after fertilizer application. The rate of plant uptake of fertilizer S decreased with time and was similar to the immobilization rate. The significance of these findings is discussed in relation to possible manipulations of the pasture—soil system to improve the efficiency of fertilizer S utilization.  相似文献   

2.
Nitrogen (N) leaching under grazed pastures can be very high directly under urine spots. The amount of N which is returned by one excretion of urine or dung can locally exceed 1000 kg ha−1 a−1 which is far more than the uptake by surrounding plants during one grazing period. We therefore quantified the contribution of N deriving from urine and dung to the total N leaching under urine and dung patches. Dung N and urine N was separately sampled from a cow feed with 15N labelled grassilage, and were amended on lysimeters in October 2000 and October 2001. Lysimeters (350 mm diameter and 800 mm length) were filled with sand, and an intact grass sod from a pasture, 4 lysimeter each were amended with the 15N labelled dung and urine; 4 lysimeters without an application of dung or urine served as control. During 11 months after dung and urine amendment the amount of leachate was monitored and leachate was analysed for nitrate, ammonium and total N. 15N in these fractions was measured. Dung and urine applications of 1052 and 1030 kg N ha−1 in autumn increased N leaching. Leaching loss of nitrate and dissolved organic N deriving from dung was only 37 kg N ha−1 in both years, whereas under urine patches 447 kg nitrate-N ha−1, 108 kg N ha−1 ammonia-N and 53 kg ha−1 dissolved organic N leached on average of both experimental years. N not deriving from dung and urine exceeded the leached N under the control by about 36 and 136 kg ha−1 on average of both years, suggesting the contribution of different priming processes.  相似文献   

3.
At two sites, microplots under winter wheat were given 140 kg N ha–1 as labelled ammonium nitrate split in 80 kg N ha–1 at tillering and 60 kg N ha–1 at shooting. Soil and plant samples were analyzed at shooting, after anthesis and at grain harvest and a15N balance was established. The average recovery rate of 95% indicates that there were no marked N losses due to leaching and denitrification, which is attributed to the low rainfall in the two months after fertilizer application. Between 19 and 23% of the fertilizer N remained in the 0–30 cm soil layer as organically bound soil N. Up to 64% was taken up by the above-ground crop. On the loamy sand, 4% of the fertilizer N at harvest remained in the roots in the 0–30 cm layer and only 3% was found as inorganic N in the 0–90 cm soil layer. The fertilizer N applied diminished plant uptake of soil N in the period between fertilizer application and harvest. As compared with the control, the fertilized plants extracted 25 and 28% less soil N from loamy sand and loess soil, respectively. The results show that application of mineral N fertilizer helps to maintain the mineralizable N content of the soil, which has been accumulated in the course of long-term intensive crop production, by adding N to the soil organic pool and simultaneously reducing the supply of soil N to the plants.  相似文献   

4.
Experiments were conducted in paddy fields at Shiga and Chiba Prefectures to study the effects of controlled-release coated urea (N-LP100) on soil microbial biomass and N uptake of rice plants by the 15N-tracer technique, during one cropping season. Three field fertilizer treatments (Zero N: 0 kgN ha–1, 15N-LP100: 64 kg N ha–1 and 15NH4Cl: 100 kg N ha–1) were set-up in the Shiga field experiment. After transplanting in the paddy fields at Shiga and Kashiwa (Chiba), a number of rice hills with standard growth were selected randomly and enclosed by polyacryl-plastic frames designated as microplots. 15N-LP100 (64 kg N ha–1) was applied in the Shiga and Kashiwa microplot experiments and the Shiga field experiment as deep-side placement (5 cm away from rice hill and 5 cm soil depth). Total N uptake of rice plants was analyzed in the course of plant growth. In addition, soils from the field fertilizer treatment plots and microplots (divided into 11 blocks) were taken and analyzed for microbial biomass N (BN) and biomass 15N (B15N). The results indicated that; (1) Plant N uptake from basal-applied fertilizers at the end of the study in the Shiga field experiment was 71.9 and 26.0% for 15N-LP100 and 15NH4Cl, respectively. In the Kashiwa microplot experiment, plant N uptake from applied 15N-LP100 was 51.2% at 67 days after transplanting (DAT) (2) Throughout the cropping season, BN was the highest, intermediate and the lowest for 15NH4Cl, 15N-LP100 and Zero N field experimental plots in the Shiga experiment, respectively. (3) In the micro-plot experiments, BN and B15N were generally higher in the soil block with deep-side application of 15N-LP100 compared with the other soil blocks. The deep-side placement of 15N-LP100 ensured a high efficiency of utilization of its N by rice plants. The method of 15N-LP100-placement also affected the spatial heterogeneity of microbial biomass N in the microplots.  相似文献   

5.
Irrigation of dairy farm effluent (DFE) onto pasture is the preferred treatment method in New Zealand for this very dilute organic effluent. Whereas the dynamics of the urine fraction is comparatively well understood, there is a lack of data on the fate of the mainly organic faecal fraction. To improve our understanding of the complex turnover processes, we labelled both the inorganic and organic N compounds of the faecal fraction of DFE with 15N. We then measured the 15N dynamics in various soil and plant fractions in a laboratory experiment at two water contents for up to 254 days. Feeding a dairy cow with 15N-labelled pasture yielded faeces that had a mean 15N abundance of 2.95 atom%. Unlabelled urine and water were added to the labelled faeces to construct the DFE, which contained 90.4% of the 15N in the organic nitrogen fraction (2.87 atom%) and 9.6% in the ammonium fraction (1.23 atom%). As N turnover and losses depend on the method of application and the soil structure, we simulated field conditions by surface-applying our DFE onto intact soil cores with pasture. Two soil water treatments were imposed; dry (30% water content) and wet (water table at 17 cm below the soil surface). The surface application resulted in filtration of the DFE, with a high proportion of the 15N remaining on the soil surface, where it was relatively unavailable for plant uptake but prone to gaseous and physical losses. Of the applied 15N, 9.9% in the dry and 13.5% in the wet treatment were still recovered as DFE on the soil surface at day 254. Plant uptake of faecal 15N accounted for 9.3% and 13.0% in the dry and wet treatments, respectively. The bulk of the 15N was recovered in the soil organic nitrogen fraction (35.1% in dry, 42.5% in wet), whereas 15N in inorganic and microbial nitrogen accounted for only very small amounts (< 2%). Total recoveries of the applied 15N in plant, soil and DFE remaining on the surface at day 254 were 58.4% in the dry, and 71.5% in the wet treatment. Separate analysis of the total and ammonium nitrogen contents and 15N enrichments of the constructed DFE and filtered subsamples (0.5 mm, 0.2 m) showed that the faecal fraction was not labelled homogeneously. Due to this heterogeneity, which was exacerbated by the filtration of DFE on the soil surface, it was difficult to calculate the turnover of the total faecal fraction based on 15N results.  相似文献   

6.
Stable isotope signatures of cattle tail switch hair or meadow vegetation have been found to be related to nitrogen (N) surpluses of whole farms and of meadows, respectively. Permanent pastures are more patchy in terms of nutrient inputs and outputs and N balances for the whole plot do not necessarily give correct impressions of losses. We here investigated correlations between isotopic signatures and N balances calculated for different spatial and temporal scales in permanent pastures. N concentrations and δ15N values of cattle tail switch hair, vegetation and soil samples were measured in an experiment with different grazing intensities started in 2002. Results were compared to soil surface balances calculated for the whole plot or for plot areas affected by either dung, urine, grazing without excreta input, or the pasture area without dung pats. There were no significant correlations between plant or cattle hair isotopic signatures and any of the balances. N fixation probably influenced vegetation signatures, making the isotopic values less dependent on soil and more on atmospheric N. The cattle preferred short mixed vegetation with more legume biomass, which also influenced the 15N values of their hair. The 15N signatures of soil samples were the best indicators of partial N balances in these heterogeneous pastures, probably because soil values are most directly influenced by N inputs and outputs. Still, soil signatures only explained between 15 and 35% of the variation in balance results. Thus, none of the tested parameters can be used as a reliable indicator of N balance results in this heterogeneous system with small differences in budgets among treatments and potentially small plot-scale N losses.  相似文献   

7.
A field experiment was conducted to determine the effects of surface applications of dairy shed effluent (DSE) (effluent collected from a dairy milking shed and consists of dung, urine and water) or chemical fertilizer (NH4Cl) on N dynamics, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) in different soil depths. The DSE and NH4Cl were applied to pasture soil at an equivalent rate of 200 kg N ha–1in May and November 1996, as autumn and late spring applications, respectively. Soil samples taken from different soil depths following the autumn application were analyzed for inorganic N, microbial biomass C and N and enzyme activities, while soil samples taken following the late spring application were analyzed for inorganic N only. The soil NH4 +concentration, soluble organic C, protease, deaminase and urease activities, and microbial biomass C and N significantly increased in the 0–5 cm soil depth soon after the application of DSE. During the first 30 days, the soluble organic C, microbial C and N and protease activity also increased in the 10–20 cm, while there was no such increase in deaminase and urease activities below 10 cm soil depth. After day 30, the microbial and enzyme activities decreased in the surface as well as in the sub-surface layers possibly due to the exhaustion of the available carbon substrates but remained higher compared to the NH4Cl and control. The NH4Cl application, due to lack of organic substrates, had no effect on soluble organic C, protease or urease activities and biomass C. However, it did increase the deaminase activity and microbial biomass N. The NO3 concentration in lower soil depths of NH4Cl treated soils was significantly higher than those in the DSE and control. This indicates that possible NO3 leaching were more after NH4Cl addition than after DSE. N applied in autumn had higher potential for leaching than that applied in late spring because of increased drainage, lower pasture growth and N uptake during the winter period. Being a source of organic N, DSE showed better performance in maintaining higher pasture yield and N uptake than the NH4Cl and the control. Pasture yield and N uptake were always higher following the spring application than the autumn application because of the optimal environmental condition during summer. These results showed that soil treated with DSE had higher enzyme activities and microbial biomass than soil treated with chemical fertilizers and this may result in longer availability of N for plant uptake and reduce the risk of N leaching losses.  相似文献   

8.
A field experiment was conducted to investigate the effect of timing and method of cultivation of a 3-year old ryegrass/white clover pasture on subsequent N mineralization, NO 3 - -N leaching, and growth and N uptake of a wheat crop in the following season. The size of various N pools and decomposition of14C-labelled ryegrass material were also investigated. Cultivation method (mouldboard or chisel ploughing) generally had no significant effect on the accumulation of mineral N in the profile in the autumn or on the amount of NO 3 - -N leached over winter.14C measurements suggested that initial decomposition rate of plant material was faster from May than March cultivation treatments. Despite this, overall net mineralization of organic N (of soil plus plant origin) increased with increasing fallow period between cultivation and leaching. The total amounts of mineral N accumulated in the soil profile before the start of leaching were 139, 119 and 22 kg N ha–1 for the March, May and July cultivated soils respectively. Cumulative leaching losses over the trial calculated from soil solution samples were 78, 40 and 5 kg N ha–1 for the March, May and July cultivated soils respectively. Differences in N mineralization over the season were generally not reflected by changes in amounts of potentially-mineralizable soil N (as measured by extraction or laboratory incubation) or levels of microbial biomass during the season. The amount of mineral N in the profile in spring increased with decreasing fallow period. This was reflected in an approximately 15% and 25% greater grain yield and N uptake respectively by the following wheat crop in plots cultivated in July rather than in March.  相似文献   

9.
The potential for improved fertilizer N use efficiency was tested using a slow release N fertilizer, methylene urea (MU), on processing tomato (Lycopersicon esculentum Mill.) in a 2-year field study in the Sacramento Valley, California. Fertilizer N use efficiency of urea and a (50:50, w:w) mixture of urea and MU (uMU) was determined in direct-seeded and transplanted tomato plots with winter cover crop (CC) or winter fallow (F) using 15N labeled fertilizers. Residual MU-N was estimated from tomato N uptake in the 15N microplots, and from residual 15N uptake of wheat grown after two tomato crops. No significant differences were found in the quantity and quality of tomato yields among fertilizer and management treatments during the first year. Total yields in transplanted FuMU plots were significantly lower in the second test year, suggesting slow mineralization of MU-N in the F treatment. On average, about 40% of added fertilizer N was taken up in both fertilizer treatments, and the recovery of 15N in plant biomass and soil was 75–96 and 50–74% in seeded and transplanted blocks, respectively. In the laboratory, mineralization of MU started faster in soils with past MU use, but the enhanced mineralization did not affect the plant N uptake in the field. MU is potentially an environmentally attractive fertilizer, but without an immediate increase in yield and N use efficiency compared to conventional fertilizers, its use on row crops may not be economically feasible unless the positive environmental factors like decreased leaching of N are considered.  相似文献   

10.
A glasshouse experiment was conducted to study the balance sheet of15N labelled urea at three rates (zero, 31.48 and 62.97 mmol N pot–1) applied to rice under flooded conditions with two moisture regimes (continuous and alternate flooding) using three Australian vertisols differing in organic carbon level. Walkley-Black organic carbon values for the three soils were 0.65, 2.13 and 3.76 for the low carbon (LC), medium carbon (MC) and high carbon (HC) soils respectively.Rice dry weight and nitrogen uptake was significantly affected by N fertilizer rates, water regimes and soils. Alternate flooding gave much lower dry weight and nitrogen uptake than continuous flooding and the LC soil gave lower dry weight and nitrogen uptake than for the MC and HC soils.Recovery of15N labelled urea fertilizer in the rice plant was low (15.4 to 38.4%) and the15N urea not accounted for in the plant or soil and presumed lost was high (36.2 to 76.0%). Recovery was lower and loss higher under alternate flooding and for the LC soil. There was no effect of fertilizer rate. The results obtained stress the need for careful management to reduce losses of nitrogen fertilizer, particularly for soils low in organic carbon.  相似文献   

11.
Two field experiments, in which differing amounts and types of plant residues were incorporated into a red earth soil, were conducted at Katherine, N.T., Australia. The aim of the work was to evaluate the effect of the residues on uptake of soil and fertilizer N by a subsequent sorghum crop, on the accumulation and leaching of nitrate, and on losses of N.Stubble of grain sorghum applied at an exceptionally high rate (~ 18 000 kg ha–1) reduced uptake of N by sorghum by 13% and depressed the accumulation of nitrate under a crop and particularly under a fallow.Loss of fertilizer N, movement of nitrate down the profile, and uptake by the crop was studied in another experiment after application of N as15NH4 15NO3 to field microplots. By four weeks after fertilizer application 14% had been lost from the soil-plant system and by crop maturity 36 per cent had been lost. The pattern of15N distribution in the profile suggested that losses below 150 cm had occurred during crop growth. The recovery of15N by the crop alone ranged from 16 to 32 per cent. There was an apparent loss of N from the crop between anthesis and maturity. Residue levels common to sorghum crops in the region (~ 2000 kg ha–1) did not significantly affect uptake by a subsequent sorghum crop, N losses, or distribution of nitrate in the profile.  相似文献   

12.
Intensively grazed, rain-fed dairy pastures on the predominantly sandy soils in the high rainfall (>800 mm annual average) Mediterranean-type climate of south-western Australia comprise >90% ryegrass (annual ryegrass, Lolium rigidum Gaud. and Italian ryegrass, L. multiflorum Lam.). To maximise pasture use for milk production, the pastures are rotationally grazed by starting grazing when ryegrass plants have 3 leaves per tiller, and fertiliser nitrogen (N) and sulfur (S), in the ratio of 3–4 N and 1S, need to be applied after each grazing for profitable pasture dry matter (DM) production. In addition, farmers usually also apply low levels of phosphorus (P) and potassium (K) fertiliser to these pastures after each grazing, despite Colwell soil test P usually being well above critical values for pasture production, and fertilizer K being only required for clover in the traditional clover (Trifolium subterraneum L.) ryegrass pastures of the region. In field experiments undertaken May 2006–June 2010 on intensively grazed ryegrass dairy pastures in the region, no significant ryegrass DM responses to applied fertiliser P or K were obtained, regardless of level or method of P or K application. When no P was applied, soil test P declined gradually, by between 4.4 and 7.1 mg/kg per year, and remained above the critical value for the soils at 2 sites, but declined below the critical value for soil at a third site. Critical soil test P is located near the maximum yield plateau in the flat part of the relationship between yield and soil test P, particularly when, as appropriate for dairy production, the critical value is for 95% of the maximum pasture DM yield. Consequently, when no P is applied and soil test P decreases, significant pasture DM yield decreases will only occur when soil test P approaches the steeper part of the relationship, which can take some time. In addition, as occurs on farms, faeces deposited by cows while grazing supplied P to pasture even when no fertiliser P was applied. Soil K testing proved unreliable for indicating the need for fertiliser K applications to pasture in the next growing season because many soil samples collected within and between urine patches contained elevated levels of K deposited by cows while grazing. We conclude fertiliser P should only be applied to intensively grazed ryegrass dairy pastures when soil testing indicates it is required. Further research is required to assess if plant K testing is an alternative, but urine patches may also pose a problem for plant testing.  相似文献   

13.
Changes in soil organic N following fertilizer N applications are related to soil quality and subsequent N uptake by plants. Recovery of fertilizer N as organic N and soil microbial biomass N within two corn (Zea mays L.) fertilization systems was studied using15N on a Chicot soil (fine-loamy, mixed, frigid, Typic Hapludalf) and a Ste. Rosalie soil (fine, mixed, frigid, Typic Humanquept) in southwestern Quebec in 1989 and 1990. The two fertilization systems studied received a recommended rate of 170-44-131 kg (normal rate) and a high rate of 400-132-332 kg of N-P-K per hectare. Increasing fertilization rates above normal increased microbial biomass N immobilization with a subsequent greater N release. Higher fertilization rates significantly increased both the magnitude of soil microbial biomass N and microbial fertilizer N recovery in the soil microbial biomass.  相似文献   

14.
Field microplot experiments were conducted in the semi-arid tropics of northern Australia to evaluate the response of maize (Zea mays L.) growth to addition of N fertilizer and plant residues and to examine the fate of fertilizer15N in a leucaena (Leucaena leucocephala) alley cropping system, in which supplemental irrigation was used. Leucaena prunings, maize residues and N fertilizer were applied to alley-cropped maize grown in microplots which were installed in the alleys formed by leucaena hedgerows spaced 4.5 metres apart. The15N-labelled fertilizer was used to examine the fate of fertilizer N applied in the presence of mulched leucaena prunings and maize residues.Application of leucaena prunings increased maize yield while addition of N fertilizer in the presence of the prunings produced a further increase in maize production. There was a significant positive interaction between N fertilizer and leucaena prunings in increasing maize production. The addition of maize residues in the presence of N fertilizer and leucaena prunings decreased maize yield and N uptake and increased fertilizer15N loss from 38% to 47%. Maize recovered 24–79% of fertilizer15N in one cropping season, depending on application rate of N fertilizer and field management of plant residues. About 20–34% of fertilizer15N remained in the soil. More than 37% of fertilizer15N was apparently lost from the soil and plant system largely through denitrification when N fertilizer was applied at 40 kg N ha–1 or more in the presence or absence of plant residues. Application of N fertilizer improved maize yield and increased the contribution of mulched leucaena prunings to crop production in the alley cropping system.  相似文献   

15.
A field experiment was conducted on a poorly-drained Aeric Paleaquult in northeastern Thailand to determine the effect of N and S fertilizers on yield of rainfed lowland rice (Oryza sativa L.) and to determine the fate of applied15N- and35S-labeled fertilizers. Rice yield and N uptake increased with applied N but not with applied S in either sulfate or elemental S (ES) form. Rice yield was statistically greater for deep placement of urea as urea supergranules (USG) than for all other N fertilizer treatments that included prilled urea (PU), urea amended with a urease inhibitor (phenyl phosphorodiamidate), and ammonium phosphate sulfate (16% N, 8.6% P).The applied15N-labeled urea (37 kg N ha–1) not recovered in the soil/plant system at crop maturity was 85% for basal incorporation, 53% for broadcast at 12 days after transplanting (DT), 27% for broadcast at 5–7 days before panicle initiation (DBPI), and 49% for broadcast at panicle initiation (PI). The basal incorporated S (30 kg ha–1) not recovered in the soil/plant system at crop maturity was 37% for sulfate applied as single superphosphate (SSP) and 34% for ES applied as granulated triple superphosphate fortified with S (S/GTSP). Some basal incorporated15N and35S and some broadcast15N at PI was lost by runoff. Heavy rainfall at 3–4 days after basal N incorporation and at 1 day after PI resulted in water flow from rice fields at higher elevation and total inundation of the 0.15-m-high15N and35S microplot borders. Unrecovered15N was only 14% for 75 kg urea-N ha–1 deep placed as USG at transplanting. This low N loss from USG indicated that leaching was not a major N loss mechanism and that deep placement was relatively effective in preventing runoff loss.In order to assess the susceptibility of fertilizer-S to runoff loss, a subsequent field experiment was conducted to monitor35S activity in floodwater for 42 days after basal incorporation of SSP and S/GTSP. Maximum35S recoveries in the floodwater were 19% for SSP after 7 days and 7% for S/GTSP after 1 day. Recovery of35S in floodwater after 14 days was 12% for SSP and 3% for S/GTSP.This research suggests that on poorly drained soils with a low sorption capacity, a sizeable fraction of the fertilizer S and N remains in the floodwater following application. Runoff could then be an important mechanism of nutrient loss in areas with high probability for inundation following intense rainfall.  相似文献   

16.
The southeast US produces a tremendous number of broiler chickens (Gallus gallus), which in turn produce massive quantities of litter (manure and bedding materials). In the Southeast, litter is most often disposed of via land application to pastures, however, the ultimate fate of much of the applied nitrogen (N) is not known. We have constructed N budgets for three sites across the southeastern U.S. in an effort to determine how much of the applied N is useful for plant production and how much is left to be absorbed by the environment. Study sites were located in the Coastal Plain (Alabama), Piedmont (Georgia), and Cumberland Plateau (Tennessee) Major Land Resource Areas (MLRA) of the southeastern US. Litter was applied in the Spring of two consecutive years at a rate to supply 70 kg of available N ha–1. The total amount of N applied ranged from 103 to 252 kg N ha–1 depending on site and year. Nitrogen fluxes monitored in this study were broiler litter N, ammonia (NH3) volatilization, denitrification, plant uptake, and leaching. Plant uptake represented the largest flux of applied N, averaging 43% of applied N. Losses due to NH3 volatilization and denitrification combined were only 6% of applied N on average. Loss of N due to NO3-N leaching appeared to be significant only at the Coastal Plain site where NO3-N concentrations in the groundwater peaked at 38 mg N l–1. We believe the majority of excess N shown in these budgets is likely accounted for by leaching losses and soil accumulation. Regardless of these assumptions and low gaseous losses, it is apparent that on average, 57% of applied N is destined for a fate other than plant uptake. The results of this study indicate that land-application of broiler litter at currently recommended rates has the potential for negative impacts on the environment of the southeastern U.S. in the long-term.  相似文献   

17.
This paper presents novel data illustrating how soil aggregates control nitrogen (N) dynamics within conventional and alternative Mediterranean cropping systems. An experiment with 15N-labeled cover crop residue and synthetic fertilizer was conducted in long-term (11 years) maize–tomato rotations: conventional (synthetic N only), low-input (reduced synthetic and cover crop-N), and organic (composted manure- and cover crop-N). Soil and nitrous oxide (N2O) samples were collected throughout the maize growing season. Soil samples were separated into three aggregate size classes. We observed a trend of shorter mean residence times in the silt-and-clay fraction than macro- (>250 μm) and microaggregate fractions (53–250 μm). The majority of synthetic fertilizer-derived 15N in the conventional system was associated with the silt-and-clay fraction (<53 μm), which showed shorter mean residence times (2.6 months) than cover crop-derived 15N in the silt-and-clay fractions in the low-input (14.5 months) and organic systems (18.3 months). This, combined with greater N2O fluxes and low fertilizer-N recoveries in both the soil and the crop, suggest that rapid aggregate-N turnover induced greater N losses and reduced the retention of synthetic fertilizer-N in the conventional system. The organic system, which received 11 years of organic amendments, sequestered soil organic carbon (SOC) and soil N, whereas the conventional and low-input systems merely maintained SOC and soil N levels. Nevertheless, the low-input system showed the highest yield per unit of N applied. Our data suggests that the alternating application of cover crop-N and synthetic fertilizer-N in the low-input system accelerates aggregate-N turnover in comparison to the organic system, thereby, leading to tradeoffs among N loss, benefits of organic amendments to SOC and soil N sequestration, and N availability for plant uptake.  相似文献   

18.
Split broadcast applications of prilled urea, deep point-placed urea supergranules (USG), and broadcast sulfur-coated urea (SCU) were compared as nitrogen sources for wetland rice (Oryza sativa L.) in two field experiments on a sandy soil (Typic Ustipsamment) with a high percolation rate (approx. 110 mm/day) in the Punjab, India. The USG was consistently less effective than the split urea and averaged 1 ton ha–1 less rice yield at the highest nitrogen rate (116 kg N ha–1). SCU produced the highest grain yields in both experiments; it averaged 1.7 ton ha–1 more than did the split urea at the highest N rate.The fertilisers were then compared in field microplots; percolation was permitted or prevented so that the cause of the poor performance of USG could be elucidated. USG gave higher grain yield and N uptake in microplots that were not leached than in those that were leached. In leached microplots, the grain yields were higher from prilled urea than from USG treatments provided the placement pattern of the USG matched that of the field plots. Yields were not higher from treatments in which the USG were more closely spaced. In microplots in which leaching was prevented, the broadcast prilled urea was less effective than the deep-placed USG, which gave yields approximately 60% greater than those from split urea and the same as those from SCU. Broadcast prilled urea in undrained microplots caused high levels of ammonium (40 ppm) to develop in the floodwater where high pH (8.9) and high alkalinity (4.9 meq l–1) may have led to extensive ammonia volatilisation. The use of USG and SCU in undrained microplots reduced floodwater ammonium levels to less than 3 ppm.Urea and ammonium leaching losses measured in fallow soil columns in the laboratory were much greater from USG than from prilled urea. Leaching losses from SCU were negligible. The data suggest that SCU is the preferred N source for rice soils having a high percolation rate and that USG is a poor alternative to split applications of prilled urea.  相似文献   

19.
Given inherent qualities like N-fixation, P-solublization and nutrient recycling pulses remain the most preferred option for diversification of cereal-based rotations. A long-term experiment was used to assess the effect of including pulses in rice–wheat rotation on soil–plant nutrient dynamics under inorganic and organic nutrient management. Results revealed that pulses were equally responsive to organic and inorganic nutrient management while, growth of cereals especially wheat was restricted severely under organic production system due to low nutrient input. The annual input (kg ha?1) of N (103.6–160.8) and P (25.9–34.7) under organic treatment was almost ½ of the recommended inorganic rate, while organics supplied higher K and S. Under organic management, the apparent balance of all the nutrients was negative whereas, inorganic fertilization resulted in positive balance of N, P and Zn. Long-term inclusion of pulses in rice–wheat rotation significantly increased soil organic C and available nutrients thus, increased the nutrient uptake by cereals. Mungbean inclusion in rice–wheat rotation significantly (P ≤ 0.05) increased uptake of N (23.0 %), P (32.9 %) and K (21.1 %) by rice crop. Continuous inorganic fertilization enriched soil available N, P, Zn and B. While organic management maintained higher SOC, available K and S over inorganic treatment. Thus, the study suggested that under organic management N and P nutrition is limiting factor for cereals and needs inorganic supplementation. The study also indicates the need for including pulses in conventional rice–wheat system for optimum nutrient acquisition and long-term soil health management.  相似文献   

20.
Many, but not all, legumes of tropical origin, transport fixed N from the nodules to the shoot tissue in the form of ureides, and the mineral N absorbed from the soil is principally transported in the form of nitrate. The analysis of stem xylem sap, or hot-water extracts of stem tissue, for ureide and nitrate has been used successfully to quantify BNF contributions to several grain legumes and more recently to some shrub and forage legumes. The objective of this study was to investigate the application of this technique to the quantification of the contribution of BNF to the forage legume Desmodium ovalifolium by comparing the relative ureide abundance (RUA) of stem extracts of this plant with simultaneous estimates of BNF obtained using the 15N isotope dilution technique. The first experiment was performed in pots of soil, taken from a grazing study, amended with 15N-labelled organic matter at four different application rates. The ureide concentration in the stem extracts reflected the changes in BNF activity during plant growth and the RUA was closely correlated with the proportion of N derived from BNF as determined from the 15N technique (r 2 = 0.86 and 0.88 for inoculated and non-inoculated plants, respectively). The use of a calibration curve derived from a previous study where the same legume was fed increasing concentrations of 15N labelled nitrate in sand/vermiculite culture, resulted in an over-estimation of the BNF contribution which may have been due to a significant uptake of ammonium from this acidic soil. The second experiment was performed in field plots and a good agreement was found between the estimates of BNF derived from using the ureide and 15N dilution techniques at two harvests six months apart. The uptake of soil N by the D. ovalifoliumand two forage grasses (Brachiaria humidicola and Panicum maximum) was estimated using an in situ soil core technique, and, while the uptake of N by the grasses was successfully estimated, this technique underestimated the N derived from the soil by the legume as determined by the ureide and 15N dilution techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号