首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当前全球碳捕集与封存(CCS)技术进展及面临的主要问题   总被引:4,自引:0,他引:4  
本文分析了当前全球碳捕集与封存(CCS)的最新技术进展及面临的主要问题,指出碳捕集与封存虽然被广泛认为是未来主要的碳减排技术,且当前全球的CCS示范和规划项目在不断增加,但是CCS项目仍面临诸如成本昂贵、使总能效下降、缺乏法律基础、公众难以接受等一系列问题。  相似文献   

2.
碳捕集与封存技术的现状与未来   总被引:6,自引:0,他引:6  
全球气候变暖问题已经越来越严重,碳捕集与封存(CCS)技术被看作是最具发展前景的解决方案之一,随着研究的不断深入,CCS技术成本将进一步降低。碳捕集工艺按操作时间可分为燃烧前捕集、富氧燃烧捕集和燃烧后捕集,其中最有发展前景的是富氧燃烧捕集。CO2-EOR技术虽然不是直接针对性地封存二氧化碳,但其不仅可以解决二氧化碳的封存问题,还能提高油田采收率,近年来得到广泛应用。我国在CCS技术的研究上进行了大量工作,CCS技术已被列入"973计划"和"863计划",北京高碑店热电厂二氧化碳捕集示范工程受到国内外的关注。虽然CCS技术取得了长足的进步,但仍面临着很多问题,如二氧化碳泄漏问题、技术难点、建设和运行成本高昂等。CCS技术项目投资较大,如果没有政府在立法和税收机制上的激励与优惠措施,很难真正进入商业化应用阶段。好在种种迹象表明,随着全球气候问题的加剧,各国政府越来越重视CCS技术的研发和利用。  相似文献   

3.
CO_2捕集与封存(CCS)技术现状与发展展望   总被引:2,自引:0,他引:2  
介绍CCS技术的发展和现状,列举法国道达尔(Total)石油公司和挪威国家石油(Statoil)公司经过周密的准备,各自在CCS试验性项目方面取得成功,证明CCS技术是成熟可靠的。指出目前是中国发展CCS技术的良好时机,建议制订发展CCS技术目标规划并逐步完成,达到最终提升中国在CCS技术开发方面的竞争力。  相似文献   

4.
碳捕集与封存(CCS)是一项新兴的、具有大规模减排潜力的技术,被认为是进行温室气体深度减排最重要的技术路径之一。本文选择我国的能源消费大省广东省为研究对象,在分析CCS发展现状的基础上,结合广东省的能源消费结构和CO2排放现状及趋势,分析了广东省发展CCS的必要性和可行性,并从CO2的捕集、运输、封存等环节,探讨了广东省CCS发展的技术需求和政策需求,以期为广东省CCS技术的发展提供科学支撑。  相似文献   

5.
作为应对全球气候变化的技术途径之一,碳捕集与封存在全球各地受到了广泛重视。国际能源署研究表明,  相似文献   

6.
碳捕集、利用与封存(CCUS)作为最有前景和有效深度减排的低碳技术之一,将给传统化石能源行业、制造业、建造业、工程服务业和金融行业等产业带来显著的发展机会。分析了英国CCS商业化示范项目带来的CO2减排贡献,潜在CCUS供应链的商业机会、设备和技术需求,以及英国采用海底封存的原因,结合我国广东省实际情况,探讨了CCUS技术对广东省带来的产业机会。研究表明:尽管全球CCUS市场还没到达迅速增长阶段,但如果现在不及早准备逐步推动示范项目和相关产业发展的政策,将会失去发展CCUS相关产业和进入其供应链的机会。CCUS相关技术和装备都在广东省现有能源行业等非CCUS领域有广泛应用和市场,结合广东省装备制造和能源服务企业,开展国内外企业合作,可为CCUS产业发展和成本下降做出贡献。  相似文献   

7.
碳捕集与封存技术(CCS)成本及政策分析   总被引:1,自引:0,他引:1  
张建府 《中外能源》2011,16(3):21-25
当前,减排CO2的呼声日益高涨。在未来相当长的时间内,我国一次能源仍将以煤为主,而用于发电的煤炭量占到煤炭消费总量的一半以上,已成为国内CO2排放的重要来源。整体煤气化联合循环(IGCC)发电技术不仅具有燃料来源广、发电效率提升空间大等优点,而且能以较低的成本实现CO2减排。以IGCC碳捕集结合强化采油为例,分析碳捕集与封存(CCS)全过程CO2减排成本。结果表明,在IGCC电站进行碳捕集结合强化采油的情景下,捕集CO2的IGCC系统的发电成本低于不捕集CO2的IGCC电站的发电成本。CO2减排成本主要受井口油价及CO2利用率影响,当井口油价超过14.642美元/bbl时,CO2减排成本为负值。CCS的发展将经历示范、扩大规模和商业化三个阶段,针对不同的发展阶段,政府应分别采取相应的政策措施。在示范阶段,应加强对相关技术研究的支持,提供财政补贴;在扩大规模阶段,应重点采取财政补贴措施,并配以CCS发电配额标准和CCS电力贸易体系;在商业化阶段,政府已无需继续提供财政补贴,而CCS发电配额标准和认证贸易体系仍将是一个有效的方法。  相似文献   

8.
燃煤电厂二氧化碳捕集、利用与封存技术   总被引:3,自引:0,他引:3  
结合华能集团在CO2捕集方面所开展的工作,介绍了国内外在燃煤电厂CO2捕集、利用与封存方面的技术进展。建设附CO2捕集和封存(CCS)的低碳排放燃煤电厂,是今后燃煤发电所必须面对的课题,同时对CO2的资源化利用也应引起足够的重视。  相似文献   

9.
《节能与环保》2010,(11):8-8
<正>近日,美能源部宣布将实施总额达31.8亿美元的三个项目,以加速发展商业规模碳捕集和封存技术。其中,政府直接投入9.8亿美元,并撬动私营部门投入22亿美元。美能源部长朱棣文表示,这些投入是推进碳捕集和封存技术发展  相似文献   

10.
舟丹 《中外能源》2012,(12):29-29
碳捕集与封存(CCS)是指将大型发电厂所产生的二氧化碳收集起来,并用各种方法储存以避免其排放到大气中的一种技术。这种技术被认为是未来大规模减少温室气体排放、减缓全球变暖最经济、可行的方法。  相似文献   

11.
碳捕集与封存(Carbon Captureand Storage,简称CCS)。是指把发电等固定排放源排放的CO2捕集起来,进行利用或注入到深部咸水层等永久封存的过程。它是包括CO2捕集、输送、利用、封存等多种技术的组合技术,是潜在的重要碳减排技术之一。据IEA估计。若要达到2050年全球温室气体排放相比2005年减少50%的目标,  相似文献   

12.
舟丹 《中外能源》2012,(12):41-41
CCS技术可以分为捕集、运输以及封存三个步骤,商业化的二氧化碳捕集已运营了一段时间,已发展得较为成熟,而二氧化碳封存技术还在进行大规模的实验。二氧化碳的捕集方式主要有:燃烧前捕集、富氧燃烧和燃烧后捕集。  相似文献   

13.
于强 《能源与环境》2010,(1):64-65,79
介绍CCS技术的发展和现状,列举法国道达尔(Total)石油公司和挪威国家石油(Statoil)公司经过周密的准备,各自在CCS试验性项目方面取得成功,证明CCS技术是成熟可靠的。指出目前是中国发展CCS技术的良好时机,建议制订发展CCS技术目标规划并逐步完成.达到最终提升中国在CCS技术开发方面的竞争力。  相似文献   

14.
舟丹 《中外能源》2014,(6):73-73
正PwC咨询公司气候变化部门主管Jonathan Grant认为,未来只能有两种情况,要么化石燃料被可再生能源替代,要么化石燃料发电依然存在,但配有碳捕集与封存(CCS)设备。目前这两种情况进展都太缓慢。有科学家认为,目前全球限制温室气体排放量的承诺还不足以阻止"危险"的气候变化,无法保障2℃的安全值,各国  相似文献   

15.
舟丹 《中外能源》2014,(6):59-59
正中国在碳捕集与封存(CCS)方面积极与澳大利亚、英国等技术发达国家合作,积极发展碳捕集与封存的试点项目。2008年7月,中国华能集团与澳大利亚联邦科学工业研究组织(CSIRO)正式宣布在北京建的燃煤电厂二氧化碳(CO2)捕集示范工程建成投产。这项由华能控股的,由西安热工研究院设计完成的华能北京热电厂CO2捕集示范工程,是中国首个燃煤电厂烟气CO2捕集示范工程,预计其年回收CO2能力可达到3000t。  相似文献   

16.
预测世界二氧化碳排放量峰值40Gt/a出现在2025年,此后年均下降4.1%,2050年才能达到IEA Blue Map情景要求的14Gt/a,届时人均排放量为1.5t,由于总降幅未达到80%,仍需努力减排,争取2070年世界二氧化碳排放量达到10Gt/a。中国2005~2025年累积二氧化碳排放量约160Gt,2025~2050年间约194Gt,2050~2070年间约75Gt,2005~2070年间合计约472Gt,约占当时世界份额的27%。希望中国碳排放峰值出现在2025年而不是2030年,即使能控制当年二氧化碳排放量达到10.5Gt/a的水平,此后年均下降2.9%,2050年达到5Gt/a的较高水平,年人均排放量降低到3.4t,仍高于世界均值。为了与世界总降幅同步,还需要进一步减排,争取2070年二氧化碳排放量达到2.5Gt/a。为了在2050年达到期望的碳减排目标,必须优化中国的产业结构和能源结构,发电、钢铁、水泥是中国节能减排的重点。受生物质资源不足、煤化工生产油品只能适度发展、氢燃料替代目前尚无确切时间推广节点的制约,预计2050年中国替代石油燃料的比率在20%左右,低于欧美地区50%~70%的...  相似文献   

17.
预测世界二氧化碳排放量峰值40Gt/a出现在2025年,此后年均下降4.1%,2050年才能达到IEA Blue Map情景要求的14Gt/a,届时人均排放量为1.5t,由于总降幅未达到80%,仍需努力减排,争取2070年世界二氧化碳排放量达到10Gt/a。中国2005~2025年累积二氧化碳排放量约160Gt,2025~2050年间约194Gt,2050~2070年间约75Gt,2005~2070年间合计约472Gt,约占当时世界份额的27%。希望中国碳排放峰值出现在2025年而不是2030年,即使能控制当年二氧化碳排放量达到10.5Gt/a的水平,此后年均下降2.9%,2050年达到5Gt/a的较高水平,年人均排放量降低到3.4t,仍高于世界均值。为了与世界总降幅同步,还需要进一步减排,争取2070年二氧化碳排放量达到2.5Gt/a。为了在2050年达到期望的碳减排目标,必须优化中国的产业结构和能源结构,发电、钢铁、水泥是中国节能减排的重点。受生物质资源不足、煤化工生产油品只能适度发展、氢燃料替代目前尚无确切时间推广节点的制约,预计2050年中国替代石油燃料的比率在20%左右,低于欧美地区50%~70%的比率。但通过提倡绿色出行、提高发动机燃油效率、乘用车过渡到以纯电动汽车和混合动力汽车为主、石油替代步伐加快且替代方式多样化、提高石油加工轻质化程度、加大天然气在CHP或DES/CCHP的高效利用等措施,将2050年的原油消费量控制在6.0×108t仍然有可能。加工6×108t原油可生产1.08×108t化工轻油,CBTL生产的油品总量中还包含1200×104t石脑油,合计化工轻油量为1.20×108t,加之还可由煤化工MTO/MTP生产一定量的烯烃,可满足基本有机化工原料的需求。只有通过各部门的综合努力,低碳排放的A或B情景才有可能实现,任何部门的牵制都将影响全国碳减排目标的实现。  相似文献   

18.
为了减少二氧化碳排放量,根据中国能源消费量大和人口众多的国情,需要控制2050年个人乘用车保有量不超过3×108辆;石油消费量控制在6.0×108t;将城市商业和居住领域人均天然气消费量提高到200~250m3,天然气发电消费量提高到3000×108~3500×108m3,消费总量达到9000×108m3;将煤炭消费量控制在一次能源需求量的36%左右;人均电力消费量提高到8000k W·h。应从2030年起规模化、商业化地实施二氧化碳捕集与封存(CCS)措施。根据IPCC第五次评估报告(AR5)第一工作组报告第11章和第12章的评估数据,分析碳排放量对远期(至2100年)及未来更长时期(至2300年)气候变化的影响。按照比较符合实际的RCP4.5情景数据,根据预估的中远期的碳排放量,预测21世纪下半叶大气气温将逐渐升高,23世纪全球平均温升可达2.5℃±0.6℃。IPCC预测2050年全球温室气体排放量将到达峰值(约50Gt二氧化碳当量),然后逐步降低,到2080年后稳定在约25Gt二氧化碳当量的水平。21世纪末世界人均二氧化碳排放量将达到2t的水平,对发展中国家而言碳减排压力仍然相当大,需采取严格而有效的碳减排措施。欧盟新近向联合国提出的全球2050年减排目标,与中国2030年达到碳排放峰值的承诺不一致,值得关注。  相似文献   

19.
减少温室气体排放已刻不容缓,一系列研究显示,温升2℃是人类生活不受气候变化干扰的上限,大致550μL/L二氧化碳当量的温室气体浓度或约450~500μL/L的二氧化碳浓度对应2℃的温升。达到稳定浓度时的2005年以后的累积排放量和2005年的排碳数据一起才可以计算出最终的减排量化指标,而拐点年代和逐年排放量是可调控的动态指标。核实本世纪上半叶的累积排放量,并将排放额度分解到各个国家和地区是一项十分艰巨且很迫切的任务。我国的碳减排可分为2005~2020年的前期、2021~2035年的中期和2036~2050年的后期。权威部门曾推算了一系列数据,但与当前掌握的实际数据对比,对2010年的碳排放预测数据均偏低。有学者提出我国2005~2050年间的排碳额度为370Gt,约为全世界的28%,比例基本合理。如果2050年二氧化碳排放总量确定为140×108t,则中国为40×108t,人均2.6t,形势非常严峻。把我国2020年二氧化碳排放量控制在100×108t以内十分必要;我国碳减排中期处于拐点过渡期,我国的拐点将直接影响世界的拐点,应争取拐点出现在2025年,过渡期为2020~2030年;我国2050年与2035年的二氧化碳排放量差值应为45×108t,只要依靠非化石能源替代化石能源、采用CCS技术、最大限度地采用零碳排放甚至负碳排放的替代燃料就能得到控制,但仍然存在许多不确定因素,有待深入研究。  相似文献   

20.
随着技术的进步,非化石能源将成为重要的一次能源,其对化石能源的替代将对碳减排起到举足轻重的作用。核能属于不排碳的新能源,生物质能具有零排碳甚至负排碳的特点,其他可再生能源包括水能、风能和太阳能等均属清洁的超低排碳能源。先进的核能压水堆技术成熟,型式已发展到第三代,安全性不断提高。尽管发生了日本福岛核危机,但不应责怪核能本身,仍需要在高度重视安全的前提下大力发展核电。我国核电规模不宜过分压缩,2050年核电规模为300GW,发电量2100TW.h,占总用电量份额20%的目标比较恰当。用生物质秸秆制造燃料乙醇、用林业废弃物制造合成柴油和用废食用油脂制造生物柴油能显著降低运输业的排碳,7×108t干生物质可替代1×108t进口原油,在高油价时代其意义不言而喻。我国曾推广秸秆发电,但经济效益和社会效益有限,建议在生物质秸秆制造燃料乙醇达到产业化后不再扩大秸秆发电规模,以保证燃料乙醇产业的原料来源。水能、风能和太阳能发电量占总电量的比率是衡量绿色电力的重要指标,中国2050年这三种可再生能源发电量约3600TW.h,仅占总用电量的36%。非化石能源发电量占总发电量的份额是一项重要衡量指标,IEA在Blue Map等情景中将2050年该百分比定为61%~75%;中国工程院预测的我国2050年该百分比为70%。但如果2050年的核电装机容量为400GW时可提供总发电量的28%,加上水电、风电、太阳能三种可再生能源发电提供的36%,合计为64%,仍然存在6%的缺口;若核电装机容量只能达到300GW,缺口将达13%。如靠化石能源来弥补发电量的不足,将带来增加碳排放的后果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号