首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
A promising way to improve the performance of piezoelectric ceramics is grain orientation by templated grain growth. In this work lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN–32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN–37PT–21PZ) ceramics were textured via templated grain growth process. For texturization (001)-oriented BaTiO3 (BT) platelets (approximately 10 μm × 10 μm × 2 μm) were utilized as templates. The texturized ceramics were accomplished by aligning the templates by tape casting. The template growth into the matrix resulted in textured ceramics with Lotgering factors between 0.94 and 0.99 for both compositions. Consequences of the texture are enhanced dielectric and piezoelectric properties. Unipolar strain-field measurements of textured ceramics showed 0.25% strain s 33 at 3 kV/mm. Large signal d 33* of up to 878 pm/V were determined directly from strain measurements. Compared with randomly oriented ceramics in texturized samples unipolar strain s 33 and large signal d 33* was enhanced by a factor of up to 1.8.  相似文献   

2.
We investigate the ferroelectric properties of Pb(Zn1/3Nb2/3)O3–PbTiO3(PZN–PT)-based ceramics, which are stabilized by adding a small amount of NaNbO3 (NN) and KNbO3 (KN). As the content of alkali niobate increased, the ferroelectric properties of Pb(Zn1/3Nb2/3)O3–PbTiO3–RNbO3 (PZN–PT–RN; R=Na, K) became softer, which was more pronounced in PZN–PT–KN. The difference in the piezoelectric properties between PZN–PT–KN and PZN–PT–NN was explained by the cation size effect. Because the ionic size of Na is smaller than that of K, the Na ion can retain the ferroelectricity of the solid solution more effectively. The field-induced strain of 85PZN–5PT–10NN under 10 kV/cm was as high as 0.1%. Also, the addition of NN increased the tunability of dielectric constant significantly. At a composition of 85PZN–5PT–20NN, the tunability was 90% and no hysteresis was observed. In contrast to RN, the increase in the content of PT caused the transition from relaxor to normal ferroelectrics, which were accompanied by the structural change from the rhombohedral to tetragonal phase.  相似文献   

3.
A multilayer ceramic actuator composed of piezoelectrically active Pb(Zn1/3Nb2/3)0.2–Pb(Zr0.5Ti0.5)O0.8 (PZN–PZT) layers and electrically conducting PZN–PZT/Ag layers was fabricated by the co-extrusion process. For the piezoelectric layers, PZN–PZT, which is sinterable at a low temperature (900°C), was used. For the conducting layers, a PZN–PZT/Ag composite, made by mixing silver particles with the PZN–PZT matrix, was employed. For the co-extrusion process, piezoelectric and conducting feedrods were made by mixing the PZN–PZT and PZN–PZT/Ag, respectively, with a thermoplastic polymer. The initial feedrods, which were composed of five 3 mm-thick PZN–PZT layers, two 1.5 mm-thick PZN–PZT layers, and six 1 mm-thick PZN–PZT/Ag layers, were co-extruded through a 24 mm × 2 mm reduction die at 105°C to produce continuous multilayered green sheets. The sheets were stacked, warm pressed, and sintered at 900°C for 4 h after binder burnout. The sintered multilayer actuator showed distinct layers without any reaction products or cracks at the interface. The thicknesses of the piezoelectric and conducting layers were about 200 and 70 μm, respectively. The displacement of the multilayer actuator, composed of 40 piezoelectric layers (with a total height of 10.8 mm), was about 10 μm at an applied voltage of 500 V.  相似文献   

4.
Morphotropic phase boundary (MPB) compositions separating rhombohedral and tetragonal phases in the (1− x − y )Pb(Mg1/3Ta2/3)O3– y PbZrO3– x PbTiO3 (PMT–PZ–PT100 x ) ternary solid solution system were characterized using X-ray diffraction and dielectric, piezoelectric properties. This work focused on compositions with a PZ content fixed at y =0.2, with an MPB composition found to be located at x =0.4. Piezoelectric coefficients and dielectric permittivity were found to be on the order of d 33=580 pC/N and 4100, respectively. Acceptor modification using manganese was found to induce a "hardening" effect in 0.4PMT–0.2PZ–0.4PT, with decreased piezoelectric coefficients d 33 and dielectric loss and increased mechanical quality factor Q . Piezoelectric coefficients d 33, Q values, and dielectric loss were found to be 500 pC/N, 2000, and 0.4%, respectively, for 0.4PMT–0.2PZ–0.4PT with MnO2 dopant levels around 0.5 wt%. The figure of merit (product of Q and d 33) was found to be on the order of 1 × 106, significantly higher when compared with other hard piezoelectric PZT materials. Specifically, the PMT–PZ–PT materials may be attractive candidates for high-power ultrasonic applications, particularly fine-scale components that require relating high permittivities.  相似文献   

5.
Nanograined BaTiO3 ceramics prepared from 40-nm-size BaTiO3 nanopowders exhibited the cubic as well as the tetragonal phase, while nanograined BaTiO3 ceramics prepared from BaTiO3 nanopowders coated with Mn had only the tetragonal phase. The dielectric constant of the latter was 10 times larger than that of the former; the latter exhibited PTCR behavior with a resistivity jump ratio of about 5.0 × 104. These physical properties of the BaTiO3 ceramics appeared to be significantly affected by the strain near grain boundaries; such strain resulted in a phase transition from the cubic to the tetragonal phase in the nanograined BaTiO3 ceramics, even though the grain size was about 40 nm.  相似文献   

6.
Investigation of Rare-Earth Doped Barium Titanate   总被引:3,自引:0,他引:3  
In this study the effect of additions of 0.0015 to 0.0030 mole fraction of rare-earth oxides on the d.-c. resistivity of sintered barium titanate was investigated. The substitution may be represented by ( X 2O3)M (BaTiO3)1-M where X is the rare earth. The rare earths samarium, gadolinium, and holmium were introduced singly into the titanate, and the resistivity was measured as a function of temperature from −170° to +330°C. An anomalous increase near the tetragonal - cubic transition temperature at 120°C. occurred which in some cases amounted to an increase in the resistivity of 4000 times the value in the tetragonal phase. The thermoelectric power of the material changed sign at the Curie temperature. The tetragonal phase exhibited n -type behavior whereas the cubic phase was p -type. The rhombohedra1 and orthorhombic phases exhibited conduction activation energies of the order of 0.2 e.v. whereas that in the tetragonal phase was approximately 0.1 e.v.  相似文献   

7.
(1− x )(Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 solid solution ceramics were successfully fabricated, exhibiting a continuous phase transition with changing x at room temperature from orthorhombic, to tetragonal, to cubic, and finally to tetragonal symmetries. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal ferroelectric phases was found at 2–3 mol% (Bi0.5K0.5)TiO3 (BKT), which brings about enhanced piezoelectric and electromechanical properties of piezoelectric constant d 33=192 pC/N and planar electromechanical coupling coefficient k p=45%. The MPB composition has a Curie temperature of 370°–380°C, comparable with that of the widely used PZT materials. These results demonstrate that this system is a promising lead-free piezoelectric candidate material.  相似文献   

8.
Piezoelectric ceramics Na1− x Ba x Nb1− x Ti x O3 with low BaTiO3 concentrations x have been prepared by the solid-state reaction method, and their ferroelectric and piezoelectric properties have been studied. The ceramics are classic ferroelectrics when x ≤0.10, and the ferroelectric–paraelectric phase transition becomes diffusive when x ≥0.15. A low doping level of BaTiO3 changes the NaNbO3 ceramics from antiferroelectric to ferroelectric. With the increase in BaTiO3 doping level, the Curie temperature of ceramics decreases linearly and the remnant polarization and coercive field also decrease, while their dielectric constant increases. Na0.9Ba0.1Nb0.9Ti0.1O3 ceramics show the largest piezoelectric constant d 33 (147 pC/N) and good sinterability, suggesting that it is a good candidate for lead-free piezoelectric ceramics.  相似文献   

9.
Effect of Ba2+ substitution for Pb2+ on the dielectric and electric-field-induced strain characteristics of the PMN–PZ–PT ceramics has been investigated in the compositions of the tetragonal-rich 0.2PMN–0.36PZ–0.44PT and rhombohedral-rich 0.2PMN–0.4PZ–0.4PT ceramics. The phase approached cubic structure from the tetragonal and rhombohedral, and grain size was reduced when the Ba2+ cation was substituted. As Ba2+ content increased, frequency-dependent relaxor-like behavior of the dielectric constant was observed at temperatures below the dielectric maximum ( T max) for compositions with 20 and 25 mol% Ba2+. Electric-field-induced strain was maximized in the 12 mol% Ba2+-substituted 0.2PMN–0.4PZ–0.4PT specimen ( S max= 0.15%), and maximum piezoelectric, d 31, was 300 in the 14 mol% Ba2+-substituted 0.2PMN–0.4PZ–0.4PT specimen.  相似文献   

10.
The effects of 0–5 mol% addition of La(Mg2/3Nb1/3)O3 (LMN) on the phase transition and ferroelectric behaviors of Pb[(Mg1/3Nb2/3)1-xTix]O3 (PMNT) ceramics with compositions near the morphotropic phase boundary (MPB) were studied. An evolution of structure from rhombohedral to tetragonal was found with increasing PbTiO3 (PT) content across the MPB (at ∼32.5 mol% PT), and a coexistence of both rhombohedral and tetragonal phases was also found at the MPB. The dual-phase field extended toward the lower PT content side of the MPB, and, moreover, the rhombohedrality or tetragonality was reduced, especially for the compositions near the MPB, by the addition of La in PMNT. The ferroelectric transition was found to change from normal to diffuse as the La content increased and the compositions became more rhombohedral. In accordance with the structural evolution, the change of remanent polarization ( P r) and coercive field ( E c) also became gradually indistinct, and both P r and E c were reduced. For compositions near the MPB, both PMNT and La-modified PMNT had a similar electromechanical factor ( k p) in a range around 0.55–0.60, but the mechanical quality factor ( Q m) was significantly reduced for the La-modified PMNT. The piezoelectric coefficient ( d 33), however, was largely improved with increasing La content in PMNT of compositions at MPB. A high value of d 33∼ 815 pC/N was obtained for the 5-mol%-La-modified ceramics, but it was associated with a low value of Q m.  相似文献   

11.
We have investigated the effect of a metal coating—copper—on the tetragonal structure of fine barium titanate (BaTiO3) particles. The BaTiO3 particles were synthesized by a sol-gel method and heat treated at temperatures >900°C for various amounts of time before coating. The copper coating was achieved by an electroless coating technique. The transmission electron microscopy micrographs revealed that the coated powder contained fine BaTiO3 particles that were embedded in copper patches. The X-ray diffractometry patterns showed that the copper coating increased the c/a ratio of the fine BaTiO3 particles. For powders that were heat treated at 900°C for 10 h and were initially cubic, the copper coating changed the c/a ratio, from 1 to 1.0034. For powders that were calcined at 900°C for 20 h and were initially tetragonal, the copper coating further enhanced the c/a ratio, from 1.0028 to 1.0043. When the copper-coated BaTiO3 particles were oxidized, the c/a ratio was reduced to a value that was approximately equal to or below that of the uncoated powders. A conductive coating can eliminate the depolarization energy of an insulating polar particle. The fact that the copper coating promoted the polar tetragonal phase but the nonconductive copper-oxide coating did not was consistent with the interpretation that the presence of the cubic phase (nonpolar) in small BaTiO3 particles was caused by the depolarization effect.  相似文献   

12.
A microwave–hydrothermal (MH) process was performed at 240°C to prepare tetragonal BaTiO3 from TiCl4 and Ba(OH)2. No alkali hydroxide was used to avoid contaminations. MH BaTiO3 powder with a c / a ratio of 1.010 and a mean size of 180 nm was synthesized within only 9 h. The MH BaTiO3 contains a very low concentration of lattice hydroxyl group, associated with a very small lattice strain. The measured density of the MH BaTiO3 is favorably consistent with the theoretical value, and the Ba/Ti stoichiometry determined is 0.996. The formation of a tetragonal structure in BaTiO3 and the particle growth were strongly promoted by the MH process. The effects of lattice defects on the stoichiometry and the determination of transition enthalpy were discussed.  相似文献   

13.
The domain structure of ferroelectrics changes during poling has a direct influence on the macroscopic properties of the materials. The intensity variation of the different X-ray diffraction (XRD) pattern profiles was used to identify the percentage of 90° domain reorientation in the tetragonal phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) ceramics after poling. The results are consistent with the change of piezoelectric properties. In addition, by using XRD patterns, a spatial distribution of polarization in a well-poled 0.62PMN–0.38PT ceramics has been determined and was found to be best described by the Cauchy function W 00l (φ)=1/(1+0.023φ2).  相似文献   

14.
The shell thickness of a BaTiO3 ceramic with a core–shell structure has been measured by means of synchrotron X-ray diffraction (XRD). BaTiO3 ceramic is known from transmission electron microscope (TEM)/energy dispersive X-ray spectroscopy (EDS) observations to have an inhomogeneous microstructure with cores of a pure BaTiO3 and shells doped with additives. It is also known, from XRD observations, that the BaTiO3 cores have a tetragonal lattice structure and the shells are pseudocubic. We have estimated the shell thickness d from the full-width at half-maximum (FWHM) of the cubic ( 400 )c peak, using Scherrer's equation. The shell thickness d cal was also evaluated from the volume fraction of tetragonal BaTiO3 using a spherical core–shell model. The two values thus determined agree well, confirming that the BaTiO3 ceramic specimens have a core–shell structure. Our results show that synchrotron XRD is a simple and effective tool for quantitative analysis of the core–shell structure. It enables us to understand quantitatively the relationship between the microstructure and the dielectric properties of BaTiO3 ceramics.  相似文献   

15.
The sintering temperature of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 (NKN–BT) ceramics needs to be decreased below 1000°C to prevent Na2O evaporation, which can cause difficulties in poling and may eventually degrade their piezoelectric properties. NKN–BT ceramics containing CuO were well sintered at 950°C with grain growth. Poling was easy for all specimens. Densification and grain growth were explained by the formation of a liquid phase. The addition of CuO improved the piezoelectric properties by increasing the grain size and density. High piezoelectric properties of d 33=230 pC/N, k p=37%, and ɛ3T0=1150 were obtained from the specimen containing 1.0 mol% of CuO synthesized by the conventional solid-state method.  相似文献   

16.
Grain growth behavior and solid-state single crystal growth (SSCG) in the Pb(Mg1/3Nb2/3)O3–35 mol% PbTiO3 (PMN–35PT) system have been investigated with varying Li2O/PbO ratios. The effect of dislocation density on crystal growth has also been studied. For SSCG, a BaTiO3 single-crystal seed was embedded in a polycrystalline PMN–PT matrix. During annealing, a PMN–PT single crystal grew from the seed at the cost of the small matrix grains. Addition of Li2O dopant first enhanced and then reduced abnormal grain growth in the matrix. In the 2 mol% Li2O and 6 mol% PbO excess PMN–PT samples annealed at 1200°C, considerable single-crystal growth occurred without formation of abnormally large grains in the matrix. Increasing the dislocation density in the BaTiO3 seed crystal resulted in enhanced growth of single crystals. These results were explained in terms of interface reaction-controlled nucleation and growth, based on crystal growth theories.  相似文献   

17.
A multilayer piezoelectric ceramic/polymer composite with 2–2 connectivity was fabricated by thermoplastic green machining after co-extrusion. The multilayer ceramic body was composed of piezoelectrically active lead zirconate titanate (PZN)–lead zinc niobate (PZN)-lead zirconate titanate (PZT) layers and electrically conducting PZN–PZT/Ag layers. After co-extruding the thermoplastic body, which consisted of five piezoelectric layers interspersed with four conducting layers, it was computer numeric-controlled machined to create periodic channels within it. Following binder burnout and sintering, an 18 vol% array of 190 μm thin PZT slabs with a channel size of 880 μm was fabricated. The channels were filled with epoxy in order to fabricate a PZN–PZT/epoxy composite with 2–2 connectivity. The piezoelectric coefficient (effective d 33) and hydrostatic figure of merit ( d h× g h) of the PZN–PZT/epoxy composite were 1200 pC/N and 20 130 × 10−15 m2/N, respectively. These excellent piezoelectric characteristics as well as the relatively simple fabrication procedure will contribute in widening the application range of the piezoelectric transducers.  相似文献   

18.
High-Pressure Phase Transitions in Zirconia and Yttria-Doped Zirconia   总被引:1,自引:0,他引:1  
Raman spectroscopy has been utilized to characterize the phase transformations and transition pressures in pure and doped zirconia containing 3, 4, and 5 wt% Y2O3. The pressure-induced transformations were investigated to over 6 GPa (at room temperature) using a diamond anvil pressure cell. Pure zirconia single-crystal samples transformed to a "new" tetragonal phase (different from the one obtained at high temperatures at atmospheric pressure) at about 4 GPa. The pressure transformation, like the temperature transition, was reversible and exhibited an approximately 0.45-GPa hysteresis at room temperature. The 3 and 4 wt% Y2O3 crystals underwent a monoclinic ( P 21/b) to tetragonal ( P 42 nmc) phase transition similar to that observed at high temperatures. This phase change was found to be irreversible on releasing the pressure. The 5 wt% Y2O3 at atmospheric pressure consists of a tetragonal modification in a disordered cubic matrix; a gradual, but reversible, disordering transformation of the tetragonal precipitate takes place with pressure.  相似文献   

19.
The pyroelectric and electrostrictive properties of lead zinc niobate–lead titanate–barium titanate (PZN–BT–PT) ceramic solid solution were investigated. These properties of the (1 – x )PZN · x BT series were qualitatively explained with a composition fluctuation model. The pyroelectric depolarization temperatures of (1 – x – y )PZN · x BT · y PT ceramics were utilized to select compositions for room-temperature electrostrictive applications. Among them, 0.85PZN · 0.10BT · 0.05PT ceramic with Q 11= 0.018 m4/ C2, Q 12=−0.0085 m4/C2, s 2 at 25 kV/cm =−6.1 × 10−4, T max= 75°C at 1kHz, and T t= 27°C shows optimum properties for micropositioner applications.  相似文献   

20.
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) (70/30) thin films were deposited by pulsed laser deposition using two growth strategies: adsorption controlled deposition from lead-rich targets (∼25–30 mass%) and lower-temperature deposition ( T d≤600°C) from targets containing a small amount of excess lead oxide (≤3 mass %). The substrates used were (001) SrRuO3/LaAlO3. Typical remanent polarization values ranged between 12 and 14 μC/cm2 for these films. The longitudinal piezoelectric coefficient ( d 33,f) was measured using in situ four-circle X-ray diffraction, and the transverse coefficient ( d 31,f or e 31,f) was measured using the wafer flexure method. d 33,f and e 31,f coefficients of ∼300–350 pm/V and ∼−11 C/m2 were calculated, respectively. In general, the piezoelectric coefficients and aging rates were strongly asymmetric, suggesting the presence of a polarization bias. The large, extremely stable piezoelectric response that results from poling parallel to the preferred polarization direction is attractive for miniaturized sensors and actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号