首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
喷丸强化对GH4169合金孔结构高温低周疲劳性能的影响   总被引:2,自引:1,他引:1  
螺栓结构是航空发动机盘件的重要连接结构,但服役时存在结构应力集中的螺栓孔结构受到大载荷作用,容易发生疲劳失效。根据高压压气机盘螺栓孔结构设计中心孔板材疲劳试样,对中心孔板材疲劳试样进行喷丸强化,研究了原始、高强度和低强度喷丸工艺等3种状态下表面粗糙度和残余应力场,并表征了3种状态下的高温低周疲劳性能。结果表明:相比铰孔状态,大强度的喷丸工艺使孔壁表面粗糙度显著增大,并且在倒角区域出现喷丸塑性流动金属的堆积,虽然引入了深度较大的残余压应力场,但仍然使得疲劳性能有所降低;小强度喷丸后疲劳性能有所提高但分散度增大。通过断口可以看出,原始和小强度喷丸后疲劳源萌生在孔壁处,呈多源疲劳断口;大强度喷丸后疲劳源萌生在孔边倒角区域,为单源断口。  相似文献   

2.
连接螺栓的失效分析   总被引:1,自引:0,他引:1  
某构件进行疲劳性能试验时,连接螺栓发生断裂。通过断口宏微观观察、金相组织检查、硬度及化学成分检测,确定了连接螺栓的断裂性质和原因。结果表明:连接螺栓的断裂性质为微动疲劳;断裂原因是球轴承上由于某种偶然因素形成缺口,导致球轴承上裂纹的萌生和扩展,球轴承裂纹的产生使得连接螺栓与球轴承之间的预紧力减小,局部松动而产生不均匀接触,在径向有规律的往复载荷作用下,导致连接螺栓产生微动磨损,进而发生微动疲劳断裂。  相似文献   

3.
气膜冷却孔是航空航天高温部件常见冷却设计,但属于典型结构疲劳危险点。为了优化气膜冷却孔热-机械性能,本研究通过疲劳试验和有限元建模分析,研究GH4169合金相同底孔尺寸下的气膜冷却孔疲劳性能。研究表明:相同底孔直径下,90°圆孔疲劳寿命远低于倾斜圆孔、扇形孔和扇形后倾孔;相同孔倾角下,孔形对疲劳寿命影响较小;90°圆孔发生单断口疲劳断裂,断口与加载方向基本垂直,而倾斜圆孔、扇形孔、扇形后倾孔在孔根部附近发生疲劳断裂,断口向孔轴方向倾斜,除主断口外在孔根部均出现亚断口;90°圆孔断口疲劳裂纹在孔壁中间萌生,而倾斜圆孔和扇形孔疲劳裂纹在孔口部位萌生,且呈现多源萌生特征;裂纹萌生区平整光滑,随着裂纹扩展断口表面韧窝明显增多;孔轴倾角和孔口形状对孔周应力分布及最大应力水平具有显著影响。  相似文献   

4.
硅铝合金柴油机机体紧固面微动疲劳研究   总被引:1,自引:1,他引:0  
张翼  李杰  蔡强  葛尧 《表面技术》2018,47(1):66-71
目的针对柴油机机体和主轴承盖紧固面之间发生的微动疲劳失效现象,探讨微动状态下柴油机硅铝合金机体的裂纹萌生特性及寿命评价方法。方法建立机体紧固面组合结构有限元模型,计算机体紧固面上的应力/应变历史数据,在此基础上分析机体紧固面的接触状态,探讨摩擦系数及摩擦功对微动疲劳特性的影响。采用多轴疲劳参数(CCB、F、SSI、Ruiz参数)预测了机体微动裂纹萌生位置,对所用参数进行修正,建立适用于机体紧固面的微动疲劳寿命预测模型。结果预测结果与实验值对比可知,F、SSI参数与实验结果差异较大,CCB和Ruiz参数的寿命预测结果与实验值接近,在2.3倍公差带因子范围内。但由于CCB参数预测的裂纹萌生位置和机体实际断裂位置不符,所以不能用于机体微动疲劳寿命预测。结论在接触状态突变的区域容易萌生微裂纹,适当增大摩擦系数或者降低摩擦功可以抑制机体的微动疲劳损伤。Ruiz参数预测的机体微动疲劳寿命与实验值最为吻合,用Ruiz参数评估柴油机硅铝合金机体的微动疲劳寿命可以将误差控制在2.3倍公差带因子范围内。  相似文献   

5.
The fretting corrosion behavior of tin-plated brass contacts is studied at various normal loads (0.25, 0.5, 1.0 and 1.5 N) and fretting frequencies (1, 3 and 8 Hz). The typical characteristics of the change in contact resistance with fretting cycles and time are explained. Irrespective of the frequencies under study, 1 N normal load suppressed the fretting corrosion of tin contacts by maintaining the mechanical stability and good electrical contact between the contacting members which makes less accumulation of wear debris at the fretted zone. For a given normal load, the fretting corrosion of tin-plated contacts occur much faster at higher frequencies as it provides more fresh metal for oxidation and generates more accumulation of oxide wear debris at the contact zone. The failure time, i.e. the time for contact resistance at the fretted surface to reach 0.1 Ω is delayed with increasing normal loads at the studied frequencies. For a given normal load, the failure time reaches early at 8 Hz, i.e. at higher fretting frequencies. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. From the surface profile data, the fretted area and the wear rate is calculated and correlated with the observed extent of oxidation and earlier failure of electrical contacts. The surface morphology and EDX analysis results of the fretted surface clearly revealed the severe fretting damage at 0.25 N and 8 Hz.  相似文献   

6.
本文分析了飞机前襟翼作动筒连接螺栓底座表面裂纹的形成原因。对底座表面裂纹形貌以及渗层组织进行了观察,并且对螺栓的化学成分以及硬度进行了测定。结果表明,螺栓底座的表面裂纹为渗碳层裂纹,该裂纹性质为疲劳裂纹,裂纹起始于微动腐蚀形成的表面点蚀坑。采用显微硬度法检查渗碳层深度为1.2mm,超过了渗碳层深度的设计要求(0.6—1mm)。分析认为,螺栓底座表面裂纹的形成与渗碳层深度超标有关,而微动磨损产生的点蚀坑促进了渗碳层疲劳裂纹的萌生。  相似文献   

7.
This study investigated the fretting and fretting fatigue performance of tungsten carbide-cobalt (WC-Co) HVOF spray coating systems. Fretting wear and fretting fatigue tests of specimens with shot peening and WC-Co coatings on 30NiCrMo substrates were also performed. The WC-Co coating presents very good wear resistance by decreasing the energy wear coefficient (α) under fretting conditions by more than 9 times. The tested coating reduces crack nucleation under both fretting and fretting fatigue situations. Finally the crack arrest conditions are evaluated by the combined fretting and fretting fatigue investigation. It is shown and explained how and why this combined surface treatment (i.e., shot peening and WC-Co) presents a very good compromise against wear and cracking fretting damage.  相似文献   

8.
利用自行设计的微动疲劳实验夹具装置研究超细晶纯钛在柱面-平面接触下的微动疲劳特性,分析循环应力对其微动疲劳寿命的影响,通过观察接触区磨损和断口形貌,分析其微动损伤机制。结果表明,当法向载荷不变时,超细晶纯钛的微动疲劳寿命随着循环应力的增加而减小,比常规疲劳寿命更小。微动疲劳裂纹于接触区边缘萌生,磨损区破裂严重且附着有磨粒,在磨粒磨损作用下加速了试样的疲劳失效。断口同时呈现出疲劳形貌和微动形貌,形貌从平滑转向粗糙直至断裂,裂纹由小变大,裂纹扩展速率也逐渐增加,且在裂纹扩展区存在二次裂纹;由于受力不均在裂纹扩展区与断裂区之间存在山脊状形貌。  相似文献   

9.
The initiation and evolution of fatigue cracks in forged titanium alloy samples are monitored ultrasonically during fatigue testing. An in-situ surface wave acoustic method is applied during fatigue with an overlaid small low-frequency periodic loading, resulting in a nonlinear modulation of reflected ultrasonic pulses. The acoustic wave time traces in the sample are collected for a range of applied fatigue and modulation load levels and for a range of spatial propagation positions within each fatigue cycle. These samples are characterised by strong microstructure-induced ultrasonic scattering. To improve the signal-to-noise ratio a post-processing subtraction technique is introduced with the aim of enhancing initiated crack detectability.  相似文献   

10.
Compact test specimens were extracted from a 6061-T6 aluminum alloy welded plate with a thickness of 9 mm to analyze the cold hole expansion effect on fatigue crack growth tests conducted in mode I cyclic loading. At R = 0.1, a sharp crack in base metal, weld metal and heat affected zone was propagated from 17 to 24 mm. The fatigue crack growth at 24 mm (α = a/W = 0.3) was delayed by drilling a hole at the crack tip and applying a cold hole expansion of 4.1%. The residual stress fields due to cold hole expansion were determined with the finite element method. The fatigue crack growth testing was continued up to a crack length of 35 mm (α ∼ 0.43) at the same R, and crack opening displacements of the post-expansion crack were also determined with the finite element method. The results were expressed in terms of crack length versus number of cycles, as well as, fatigue crack growth rate as a function of applied and effective stress intensity factor range. The cold hole expansion contributed to delay the fatigue crack growth in base metal, and to a lesser extent in the weld metal and heat affected zone. A crack closure effect was determined by means of load versus crack opening displacement curves of the post-expansion crack, which was, completely or partially closed, in welded zones with compressive residual stress fields. The fracture surfaces of each welded zone were analyzed to elucidate the crack nucleation zone and its relation with the residual stress field. In all cases the crack was initiated at the surface of the specimen where the residual stresses were positive.  相似文献   

11.
分析柴油机发电机主轴承紧固螺栓断裂原因,对断裂件的化学成分、力学性能和断口宏、微观形貌等进行观察和检测。结果表明:该螺栓的化学成分除Cu元素外,其余均满足设计标准;抗拉强度高出设计要求值约为18%,硬度值超出设计要求范围上限约为5%,螺栓断裂与其材质无关,但螺栓高的强度和硬度容易使微动裂纹扩展,从而发生疲劳断裂;螺栓断面存在多处疲劳裂纹源,且裂纹扩展区较大,呈现微动疲劳断裂特征,微动疲劳是引起螺栓断裂的主要原因。  相似文献   

12.
分析了由TC4钛合金材料制造的飞机减速板接头耳片在使用中发生断裂的故障。作动筒通过螺杆与该减速板接头耳片相连接并驱动减速板工作。通过对断裂件进行外观检查,断口宏、微观观察、能谱分析,金相组织检验等手段,确定了减速板接头耳片的断裂性质及失效原因。结果表明:该减速板接头耳片的断裂性质为疲劳断裂,其断裂源是由耳片内孔与连接螺杆之间接触所产生的微动磨损引发的;产生微动磨损的原因是由于耳片与连接作动筒的螺杆之间配合间隙不当和润滑不良所致。  相似文献   

13.
Electrodeposited (ED) tin was coated on the copper substrate for electrical contact instead of conventional hot dipped (HD) tin and subjected to fretting tests. The fretting wear behavior was investigated with various fretting cycles at ± 25 μm displacement amplitude, 0.5 N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 °C temperature. The contact resistance variation was recorded with fretting cycles. The fretting corrosion performance of ED tin enhanced with that of HD tin. The grain structure of ED tin was not removed even at 9000 fretting cycles, whereas HD tin removed at 1000 fretting cycles. The interdependence of extent of wear and oxidation on the fretted zone increases the complexity of the fretting corrosion behavior. The extent of wear and the elemental distribution at the center and edges of the fretting zone was characterized using scanning electron microscope (SEM) and energy dispersive analyzer of X-ray (EDAX). The surface profile of the fretted surface was examined using laser-scanning microscope (LSM). The fretting behavior difference between ED tin and HD tin was correlated to the grain structure as well as the absence of the abrasive debris in ED tin.  相似文献   

14.
The fretting corrosion behaviour of tin plated copper alloy contacts at 3, 10 and 20 Hz and at two different track lengths (fretting amplitude) of ± 5 and ± 25 μm is studied. The change in contact resistance as a function of fretting cycles, surface profile of the contact zone, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone were used to assess the fretting corrosion behaviour. The time to reach a threshold value of contact resistance of 0.1 Ω is found to be early for the track length of ± 5 μm compared to that of ± 25 μm, at all the three frequencies. For a given track length, this threshold value reaches early at 20 Hz. The roughness and the nature of surface profile suggest considerable amount of oxidation have occurred at the track length of ± 25 μm compared to that of ± 5 μm. The surface morphology of the fretted zone reveals severe damage of the contact zone for samples with a track length of ± 25 μm at all the three frequencies. A pictorial model is proposed to describe the evolution of change in area of the contact zone. Based on the length and width of the contact zone, the fretted area is calculated. The change is fretted area as a function fretting frequency and track length is analyzed. Delamination wear is found to be operative at both track lengths and at all three frequencies. EDX line scanning also indicates higher levels of oxidation at the track length of ± 25 μm compared to that of ± 5 μm. The variation in the atomic ratios of tin, copper and oxygen of the oxide debris present at the centre and edges of the fretted zone is plotted as an area plot as a function of experimental conditions. The debris is predominantly oxides of copper for the track length of ± 25 μm whereas they are mostly oxides of tin for the track length of ± 5 μm at all the three frequencies. The narrow and deep surface profile, lower Ra values, overlapping of the tin and copper lines in the EDX line scan and the predominance of oxides of tin support the view that the chances of accumulation of wear debris at the contact zone is very high at the track length of ± 5 μm. The study concludes that tin plated contacts could encounter an early failure even at shorter track lengths of ± 5 μm, if there is sufficient accumulation of the wear debris at the contact zone.  相似文献   

15.
AISI 304 austenitic stainless steel samples were plasma nitrided at 420 °C for 6 h in vacuum atmosphere by glow discharge technique, in the presence of nitrogen gas. Plain fatigue and fretting fatigue tests were carried out on unnitrided and plasma nitrided samples. Plasma nitrided samples exhibited higher surface hardness, compressive residual stresses at the surface and lower surface roughness compared with unnitrided samples. However, plasma nitrided samples exhibited inferior plain fatigue and fretting fatigue lives compared with unnitrided samples. This was attributed to segregation of chromium at the grain boundaries of plasma nitrided specimens which might have weakened the regions near grain boundaries resulting in early crack initiation and accelerated crack propagation.  相似文献   

16.
微动疲劳损伤广泛存在于各种机械接触变载荷作用的构件上,如螺栓,轴承,键槽和榫槽等.微动疲劳会加速受微动作用构件的接触处表面及表层裂纹的萌生和扩展,在微动疲劳的早期阶段裂纹生长速率较高,导致了在微动条件下金属构件过早失效,大幅度降低构件寿命.本文以LZ50车轴钢为主要研究对象,实现了在圆形和椭网形路径加载下的拉扭复合微动...  相似文献   

17.
Effects of the temperature,slip amplitude,and contact pressure on fretting fatigue(FF) behavior of the Ti811 titanium alloy were investigated using a high frequency fatigue machine and a home-made high temperature apparatus.The fretting fatigue failure mechanism was studied by observing the fretting surface morphology features.The results show that the sensitivity to fretting fatigue is high at both 350 and 500 °C.The higher the temperature,the more sensitive to the fretting fatigue failure is.Creep is an i...  相似文献   

18.
The development of fatigue cracks at fastener holes represents a common maintenance problem for aircraft. High frequency guided ultrasonic waves allow for the monitoring of critical areas without direct access to the defect location. During cyclic loading of tensile, aluminum specimens fatigue crack growth at the side of a fastener hole was monitored. The changes in the energy ratio of the baseline subtracted reflected guided wave signal due to the fatigue damage were monitored from a stand-off distance using standard ultrasonic pulse–echo measurement equipment. Good sensitivity for the detection and monitoring of fatigue crack growth was found.  相似文献   

19.
吕晶  杨其全  张倩  胡杰  许鑫 《金属热处理》2021,46(7):238-241
以存在螺栓孔裂纹的铸钢轮装制动盘为研究对象,通过裂纹断口宏微观形貌观察、显微组织分析、拉伸性能测试、冲击性能测试、布氏硬度测试等手段分析了制动盘摩擦面螺栓孔裂纹的性质和成因。结果表明:裂纹属于热疲劳裂纹,螺栓孔倒棱处及摩擦面附近存在缩孔、疏松等铸造缺陷是导致制动盘在制动过程中循环交变热应力驱动下产生裂纹的主要原因;粗大的沿枝晶状分布组织降低了制动盘的强度、韧性和热疲劳性能,加速了裂纹的扩展。  相似文献   

20.
王荣 《物理测试》2009,27(1):42-0
采用直读光谱仪、显微硬度机、光学显微镜和扫描电子显微镜等分析手段,对失效的汽车发动机活塞连杆总成断裂原因进行了分析。断裂首先发生于连接大盖,裂纹源位于凹槽端面底部应力集中严重的过渡R处,该处还存在加工刀痕,更加剧了应力集中程度。连杆总成在承受了多次反复冲击载荷后,在该处首先产生了裂纹源,发生了疲劳断裂,之后连杆总成正常运动状态受到破坏,连接螺栓接着发生了一次性韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号