首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Derivatives of naringenin have been synthesized with organometalcarbonyl reporting groups for IR spectroscopy attached at C-2, C-3', or C-6, and the products have been tested for the induction of nod gene expression using a Rhizobium leguminosarum strain which contains the Escherichia coli lacZ (beta-galactosidase) gene fused to nodABC. Derivatives with an OMe substituent within the reporting group moiety showed residual gene induction activity.  相似文献   

3.
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids in membrane lipids. The mRNA levels of the Arabidopsis FAD7 gene in rosette leaves rose rapidly after local wounding treatments. Wounding also induced the expression of the FAD7 gene in roots. To study wound-responsive expression of the FAD7 gene in further detail, we analyzed transgenic tobacco plants carrying the -825 Arabidopsis FAD7 promoter-beta-glucuronidase fusion gene. In unwounded transformants, FAD7 promoter activity was restricted to the tissues whose cells contained chloroplasts. Activation of the FAD7 promoter by local wounding treatments was more substantial in stems (29-fold) and roots (10-fold) of transgenic plants than it was in leaves (approximately two-fold). Significant induction by wounding was observed in the overall tissues of stems and included trichomes, the epidermis, cortex, vascular system, and the pith of the parenchyma. Strong promoter activity was found preferentially in the vascular tissues of wounded roots. These results indicate that wounding changes the spatial expression pattern of the FAD7 gene. Inhibitors of the octadecanoid pathway, salicylic acid and n-propyl gallate, strongly suppressed the wound activation of the FAD7 promoter in roots but not in leaves or stems. In unwounded plants, exogenously applied methyl jasmonate activated the FAD7 promoter in roots, whereas it repressed FAD7 promoter activity in leaves. Taken together, wound-responsive expression of the FAD7 gene in roots is thought to be mediated via the octadecanoid pathway, whereas in leaves, jasmonate-independent wound signals may induce the activation of the FAD7 gene. These observations indicate that wound-responsive expression of the FAD7 gene in aerial and subterranean parts of plants is brought about by way of different signal transduction pathways.  相似文献   

4.
The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2, 6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247-1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.  相似文献   

5.
A cDNA clone (RaRO47) encoding a sulfotransferase (ST) has been isolated from Arabidopsis cell suspensions. The deduced polypeptide of 302 amino acids is highly related to plant flavonol sulfotransferases (FSTs), characterized for the first time in Flaveria, and also to STs from animal tissue. The expression of the Arabidopsis ST gene(s) corresponding to RaR047 was examined during different developmental stages. It was found that, at the level of steady-state mRNA, expression of gene(s) encoding this ST was rapidly induced in the aerial parts of young seedlings, and during growth of Arabidopsis cell cultures. No expression could be detected in roots. Treatment of Arabidopsis seedlings with hormonal or stress-related compounds, showed that RaR047 mRNA accumulation was more particularly induced in response to salicylic acid and methyl jasmonate. Furthermore, in the leaves of mature plants or in cell suspensions, accumulation of RaR047 mRNA was observed upon infection with bacterial pathogens. This expression was observed preferentially in response to avirulent pathogens causing an hypersensitive reaction, as compared to virulent pathogens, which lead to disease.  相似文献   

6.
7.
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)- and benzothiadiazole (BTH)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1 for expression of the PR genes and disease resistance. The ssi1 mutation caused PR (PR-1, BGL2 [PR-2], and PR-5) genes to be constitutively expressed and restored resistance to an avirulent strain of Pseudomonas syringae pv tomato in npr1-5 (previously called sai1) mutant plants. In addition, ssi1 plants were small, spontaneously developed hypersensitive response-like lesions, accumulated elevated levels of SA, and constitutively expressed the antimicrobial defensin gene PDF1.2. The phenotypes of the ssi1 mutant are SA dependent. When SA accumulation was prevented in ssi1 npr1-5 plants by expressing the SA-degrading salicylate hydroxylase (nahG) gene, all of the phenotypes associated with the ssi1 mutation were suppressed. However, lesion formation and expression of the PR genes were restored in these plants by the application of BTH. Interestingly, expression of PDF1.2, which previously has been shown to be SA independent but jasmonic acid and ethylene dependent, was also suppressed in ssi1 npr1-5 plants by the nahG gene. Furthermore, exogenous application of BTH restored PDF1.2 expression in these plants. Our results suggest that SSI1 may function as a switch modulating cross-talk between the SA- and jasmonic acid/ethylene-mediated defense signal transduction pathways.  相似文献   

8.
A DNA clone encoding a cathepsin D inhibitor CathInh was isolated from a potato genomic library using a CathInh cDNA as hybridization probe. The amino acid sequence of the coding region is nearly identical with a CathInh cDNA and CathInh proteins previously isolated from a tuber-specific cDNA library and from tubers, respectively. Analysis of GUS activity resulting from expression of chimeric CathInh promoter-GUS genes in transgenic potato plants revealed expression exclusively confined to potato tubers. No GUS activity could be detected in any other organ of the transgenic plants either constitutively or after wounding or treatment with abscisic and jasmonic acid (JA). Interestingly, part of the promoter region of the CathInh gene, essential for GUS activity in tubers, shows striking similarity to promoter regions of tuber-specific class I patatin genes.  相似文献   

9.
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquired resistance (SAR), this rhizobacteria-mediated ISR response is independent of salicylic acid accumulation and pathogenesis-related gene activation. Using the jasmonate response mutant jar1, the ethylene response mutant etr1, and the SAR regulatory mutant npr1, we demonstrate that signal transduction leading to P. fluorescens WCS417r-mediated ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. Similar to P. fluorescens WCS417r, methyl jasmonate and the ethylene precursor 1-aminocyclopropane-1-carboxylate were effective in inducing resistance against P. s. tomato in salicylic acid-nonaccumulating NahG plants. Moreover, methyl jasmonate-induced protection was blocked in jar1, etr1, and npr1 plants, whereas 1-aminocyclopropane-1-carboxylate-induced protection was affected in etr1 and npr1 plants but not in jar1 plants. Hence, we postulate that rhizobacteria-mediated ISR follows a novel signaling pathway in which components from the jasmonate and ethylene response are engaged successively to trigger a defense reaction that, like SAR, is regulated by NPR1. We provide evidence that the processes downstream of NPR1 in the ISR pathway are divergent from those in the SAR pathway, indicating that NPR1 differentially regulates defense responses, depending on the signals that are elicited during induction of resistance.  相似文献   

10.
11.
PhoP-PhoR, one of three two-component systems known to be required to regulate the pho regulon in Bacillus subtilis, directly regulates the alkaline phosphatase genes that are used as pho reporters. Biochemical studies showed that B. subtilis PhoR, purified from Escherichia coli, was autophosphorylated in vitro in the presence of ATP. Phosphorylated PhoR showed stability under basic conditions but not acidic conditions, indicating that the phosphorylation probably occurs on a conserved histidine residue. Phospho-PhoR phosphorylated its cognate response regulator, PhoP in vitro. B. subtilis phoR was placed in the Bacillus chromosome under the control of the Pspac promoter, which is IPTG inducible. The wild-type phoR, under either native promoter or Pspac promoter with IPTG induction, resulted in a similar level of alkaline phosphatase production. Under high phosphate conditions, strains containing wild-type phoR, or phoR mutant gene products that lacked either the periplasmic domain, or both N-terminal transmembrane PhoR mutant gene products that lacked either the periplasmic domain, or both N-terminal transmembrane PhoR sequences or various extended N-terminal sequences, showed no significant APase production. Under phosphate starvation conditions, in the presence of IPTG, all strains containing mutated phoR genes showed alkaline phosphatase induction patterns similar to that of the wild-type strain, although the fully induced level was lower in the mutants. The decrease in total alkaline phosphatase production in these mutant strains can be compensated completely or partially by increasing the copy number of the mutant phoR gene. These in vivo results suggest that the C-terminal kinase domain of PhoR is sufficient for the induction of alkaline phosphatase expression under phosphate-limited conditions, and that the regulation for repression of APase under phosphate-replete conditions remains intact.  相似文献   

12.
Two lipoxygenase (LOX) genes (tomloxA and tomloxB) are expressed in ripening tomato fruit, and tomloxA is also expressed in germinating seedlings. The 5'-upstream regions of these genes were isolated to study the regulatory elements involved in coordinating tomlox gene expression. Sequence analysis of the promoters did not reveal any previously characterized regulatory elements except for TATA and CAAT boxes. However, the sequence motif GATAcAnnAAtnTGATG was found in both promoters. Chimeric gene fusions of each tomlox promoter with the beta-glucuronidase reporter gene (gus) were introduced into tobacco and tomato plants via Agrobacterium-mediated transformation. GUS activity in tomloxA-gus plants during seed germination peaked at day 5 and was enhanced by methyl jasmonate (MeJa) treatment. No GUS activity was detected in tomloxB-gus seedlings. Neither wounding nor abscisic acid (ABA) treatment of transgenic seedlings modified the activity of either promoter. During fruit development, GUS expression in tomloxA-gus tobacco fruit increased 5 days after anthesis (DAA) and peaked at 20 DAA. In tomloxB-gus tobacco fruit, GUS activity increased at 10 DAA and peaked at 20 DAA. In transgenic tomato fruit, tomloxA-gus expression was localized to the outer pericarp during fruit ripening, while tomloxB-gus expression was localized in the outer pericarp and columella. These data demonstrate that the promoter regions used in these experiments contain cis-acting regulatory elements required for proper regulation of tomlox expression during development and for MeJa-responsiveness.  相似文献   

13.
By heterologous hybridization, we have identified the common nodulation genes nodBCIJ of Rhizobium sp. strain N33 within a 8.2-kb PstI fragment. The nodBCIJ genes are located within a 4,620-bp region which also included a consensus nod box promoter. The four open reading frames coding for the nodBCIJ genes contain 657, 1,353, 915, and 789 nucleotides, respectively. We found that the nodA gene was not adjacent to the nodB gene, unlike the situation in many rhizobia. The DNA of the nodBCIJ genes of Rhizobium sp. strain N33 were found to be homologous to the corresponding genes of other rhizobia except for the 3'-coding region of the nodC gene. The deduced NodC protein was the longest of the rhizobia except Bradyrhizobium japonicum. Tn5 mutagenesis of the common nod region of strain N33 revealed that the nodBC genes were essential for nodulation on their temperate hosts Onobrychis viciifolia and Astragalus cicer. By contrast, mutations in the nodI and nodJ genes produced a Nod+ phenotype with a reduced number of nodules on the temperate hosts. Nodules formed on Onobrychis viciifolia by either nodI or nodJ mutants were approximately 10 times smaller than nodules formed by the wild type strain: this reduction in nodule size was not observed on Astragalus cicer.  相似文献   

14.
15.
The Hrgp (hydroxyproline-rich glycoprotein) gene codes in maize for one of the most abundant proteins of the cell wall. HRGPs may contribute to the structural support of the wall and they have also been involved in plant defense mechanisms. This second aspect has been tested for the Hrgp gene in maize where, in contrast with the situation in dicot species, the gene is encoded by a single-copy sequence. Hrgp mRNA accumulation is induced in maize suspension-cultured cells by elicitors, isolated either from maize pathogenic or non-pathogenic fungi. The induction of Hrgp mRNA accumulation by elicitor extracted from Fusarium moniliforme has been studied in detail. The level of induction depends on elicitor concentration and remains high until at least 24 h. Ethylene and protein phosphorylation appear to be involved in the transduction pathway of Hrgp gene activation by the F. moniliforme elicitor but not by 5 microM methyl jasmonate or 1 mM salycilic acid. Different compounds known to participate in plant stress responses such as ascorbic acid or reduced glutathione have also a positive effect on Hrgp mRNA accumulation.  相似文献   

16.
17.
18.
Thermostable direct haemolysin of Vibrio parahaemolyticus has been shown to be a major virulence factor. The Kanagawa phenomenon (KP), haemolysis induced by this haemolysin on a special blood agar medium, is strongly associated with clinical strains. We have been studying the expressions of various tdh genes encoding this haemolysin to elucidate the significance of the tdh genes possessed by KP-negative strains isolated from patients. We examined the importance of the promoter sequence variation for expression level of the tdh gene in this study. Only the tdh2 gene, one of the two tdh genes (tdh1 and tdh2) present in a KP-positive strain, was previously shown to be responsible for the haemolytic activity of the KP-positive strain. The tdh1- and tdh2-lacZ fusions were used to determine and analyse the promoter sequence by primer extension and site-directed mutagenesis methods. Two bases (positions -24 and -34) within the determined tdh2 promoter sequence were shown to be mostly responsible for the difference in the promoter strength between the tdh2 and tdh1 genes both in Escherichia coli and in V. parahaemolyticus backgrounds. Representative tdh promoters of KP-negative strains are close to the tdh2 promoter; they differ at position -34 but have the same base at position -24 as the tdh2 promoter. We demonstrated that base substitution of the tdh promoters of KP-negative strains only at position -34 is sufficient to increase the expression of these genes to the KP-positive level. Therefore, the tdh genes of KP-negative strains are considered to be potentially important because they can generate a KP-positive subclone by a point mutation in their promoters.  相似文献   

19.
A new allelic variant of the STA2 gene, designated as STA2K, coding for a secreted glucoamylase, was cloned. Differences were revealed both in the structural gene and in the promoter region, as compared to other STA genes. The most peculiar structural features of STA2K are 1. a 1.1-kb natural deletion in its promoter located 189 nucleotides upstream of the translation start codon; and 2. an Asn-->Asp single amino acid change within the putative active site of the encoded glucoamylase. Neither the presence of glucose in the medium nor the host cell's mating type constellation affected the expression level of STA2K in S. cerevisiae. Self-replicating yeast plasmids containing STA2K were constructed and used to transform a laboratory yeast strain and various brewing strains. Pilot brewing tests with glucoamylase-secreting transformants of a brewing strain produced superattenuated beers at accelerated fermentation rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号