首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
实用化超电容器的制备与电化学性能的研究   总被引:3,自引:0,他引:3  
使用高比表面积活性炭可以制备不同电容量、不同工作电压的超电容器,高比表面积活性炭的比电容量远高于普通活性炭。10 F(9V)、45 F、600 F的超电容器样品的测试结果表明,高比表面积活性炭电极的孔径结构不会影响电容器大电流充放电容量,电化学性能稳定,高比表面积活性炭是一种待开发的优良的超电容器电极材料。  相似文献   

2.
5V型活性炭基超电容器的研制   总被引:5,自引:0,他引:5  
详细探讨了活性炭基超电容器的电化学特性。直流充放电、循环伏安以及交流阻抗等实验显示了采用二次刻蚀方法制备的活性炭材料具有良好的容量性能和功率特性,活性物质的比容量为173.2 F/g,在大功率充放电条件下以活性物质为电极的电容器的比能量大于5.0 Wh / kg。采用新型工艺开发的 5 V小型电容器电容量达到3 F以上且电容器电阻低于120 mΩ,具有良好的电化学特性。  相似文献   

3.
用作超级电容器电极材料的酚醛树脂基活性炭   总被引:2,自引:2,他引:0  
以酚醛树脂为原料,采用水蒸气活化,制备了炭纤维和泡沫炭粉两种活性炭作为超级电容器电极材料。采用扫描电镜和物理自动吸附仪对两种活性炭的形貌与孔结构进行了表征;另外采用循环伏安法和恒流充放电法,对其充放电性能进行了研究。结果表明,在1.0mA电流下充放电,炭纤维和泡沫炭粉的充电比电容分别为176.7和144.4F.g–1,放电效率分别为88.2%和85.1%;随着充放电电流的增大,二者充放电容量减小,放电效率提高。循环伏安测试表明在600mV.min–1扫描速率下炭纤维的电化学窗口大于泡沫炭粉。  相似文献   

4.
有机电解液聚苯胺-炭混合电容器性能研究   总被引:1,自引:0,他引:1  
采用化学氧化法合成盐酸掺杂聚苯胺,经NaOH溶液去掺杂后制得本征态聚苯胺(PANI)。以PANI为正极材料,活性炭为负极材料,使用1 mol/L LiPF6/(DMC+EC)有机电解液组装了混合电容器。通过循环伏安、交流阻抗、恒流充放电、循环寿命及漏电流等手段,对混合电容器的电化学性能进行了测试。结果表明,充电截止电压在1.5 V时,电容器比容量最高可达36.0 F/g,1 100次充放电循环后比容量保持在初始容量的94.2%。  相似文献   

5.
为了提高脉冲功率装置的使用寿命,研究了SrTiO3 基高压陶瓷电容器在有10Ω 负载和无负载两种条件下持续充 放电过程中的使用寿命。详细分析了电容器使用寿命随着充电电压的增加而减小的原因,充电电压的增加会导致电容器 充放电过程中陶瓷介质所受的电致应力和温度增加,从而加快了放电通道的发展和漏电流的增加,导致了电容器寿命的 缩短。详细分析了放电回路负载的存在使电容器寿命增加的原因。放电回路负载的存在使得电容器温度增加变慢,从而 减慢了电容器充放电过程中击穿的发展速度。在无负载持续充放电的条件下,要使电容器的充放电寿命增加到105 次, 充电电压需要减小到~70%额定电压;在有10Ω 负载持续充放电的条件下,要使电容器的充放电寿命增加到105 次,充电 电压需要减小到~80%额定电压。  相似文献   

6.
用于超电容器的高性能活性炭研究   总被引:3,自引:0,他引:3  
运用化学活化法制备了超电容器用高比表面积活性炭。利用碘吸附、亚甲蓝吸附和BET测试,对样品的孔隙性进行了分析。以制备的活性炭为超电容器电极材料,利用循环伏安和恒流充放电测试其电容特性。结果表明,实验研制的活性炭的比表面积为173m2·g–1,平均孔径为2.36nm,绝大部分孔径都在5nm以内;在10–2A·cm–2的电流密度下活性炭的比容达180F·g–1,基于研制的活性炭的超电容器具有良好的功率特性。  相似文献   

7.
有机双电层电容器用活性炭电极的修饰   总被引:5,自引:2,他引:3  
利用石墨、炭黑、碳纳米管三种导电碳材料,对高比表面积活性炭进行掺杂修饰,制备有机电解液双电层电容器用薄膜电极。经电化学测试发现,在 1 mol/L 的 LiPF6/EC-DEC(体积比 1∶1)溶液中,经不同导电材料修饰后的活性炭电极,其单电极比容量和大电流充放电性能均有较大改善。其中,掺杂 10%(质量分数)碳纳米管的活性炭电极,在 330 mA/g 电流密度下的单电极比容量可达 81 F/g,比未掺杂活性炭电极 60 F/g 的比容量提高了 35%;电流密度从 60 mA/g 增至 330 mA/g,该电极的容量保持率为 79.4%。  相似文献   

8.
薄膜电容器充放电试验仪的研制   总被引:1,自引:1,他引:0  
薄膜电容器在经过多次直流充电、短路放电试验后,进行薄膜电容器损耗角正切值(tanδ)测量及容量值测量,再根据其测量值变化情况,针对性的分析生产工艺中存在的问题。电容器短路放电电流很大,放电开关触点要求高,研制的薄膜电容器充放电试验仪采用气缸驱动完成充放电动作切换,充放电触点使用寿命大大增加,满足试验需要。  相似文献   

9.
聚苯胺混杂型电化学电容器研究   总被引:4,自引:1,他引:3  
采用聚苯胺在改性活性炭表面原位聚合方法,制备了聚苯胺活性炭复合物。研究了活性炭与苯胺在不同配比下制得的复合物的比容量,结果表明:当活性炭占复合材料的质量比为14.9%时,复合物的比容量为191.8F/g,比相同条件下制得聚苯胺的比容量提高了56%。以该复合物为电化学电容器的正极材料,以改性活性炭为其负极材料,电解液为6mol/L的氢氧化钠水溶液,组装了原型电化学电容器。该电容器的比能量可达8.7Wh/kg,比功率可达878W/kg。  相似文献   

10.
研究不同含量的活性炭对混合电容器的影响,并用恒流充放电、交流阻抗、循环伏安测试方法进行表征。结果表明:活性炭可以增强混合电容器的电容性能,当含量为32%时同时表现出赝电容和电双层电容特性,同时具有充放电平台和快速充放电的电化学性能。  相似文献   

11.
The detonation nanodiamond is a versatile low‐cost nanomaterial with tunable properties and surface chemistry. In this work, it is shown how the application of nanodiamond (ND) can greatly increase the performance of electrochemically active polymers, such as polyaniline (PANI). Symmetric supercapacitors containing PANI‐ND nanocomposite electrodes with 3–28 wt% ND show dramatically improved cycle stability and higher capacitance retention at fast sweep rate than pure PANI electrodes. Contrary to other PANI‐carbon nanocomposites, specific capacitance of the selected PANI electrodes with embedded ND increases after 10 000 galvanostatic cycles and reaches 640 F g?1, when measured in a symmetric two‐electrode configuration with 1 M H2SO4 electrolyte. The demonstrated specific capacitance is 3–4 times higher than that of the activated carbons and more than 15 times higher than that of ND and onion‐like carbon (OLC).  相似文献   

12.
将碳纳米管制成薄膜电极,以二(三氟甲基磺酸酰)亚胺锂(LiTFSI)-1,3-氮氧杂环戊-2-酮(OZO)室温熔盐为电解液,装配成模拟电容器。测试结果表明,比电容为20.5F/g,工作电压可达2.0V以上,循环充放电500次后容量损失小于5%。室温熔盐在碳纳米管电化学电容器中表现出良好的电化学兼容性,具有良好的热稳定性,是超级电容器非常有前景的新型电解液。  相似文献   

13.
在非水电解质体系中,用恒电流充放电法测定所制活性炭电极的双电层比电容,研究了活性炭的结构对比电容的影响。结果表明,超高比表面积活性炭(SBET≥2500m2/g)比表面积为2827m2/g时,电容器比电容值高达101.6F/g,是比表面积为1384m2/g的普通活性炭电容器比电容的2.4倍。提高活性炭中2~4nm孔所占的百分率,能有效地提高电容器比电容。  相似文献   

14.
金属氧化物改性炭电极及EDLC性能研究   总被引:1,自引:0,他引:1  
将市售活性炭用Ni(NO3)2及Co(NO3)2溶液浸渍后进行高温热解处理。采用BET、循环伏安、恒流充放电等测试手段,研究改性活性炭电极构成的双电层电容器(EDLC)性能。结果表明,由Ni(NO3)2及Co(NO3)2热解产生的NiO、CoO有显著的准电容效应,与活性炭原有的双电层电容构成了复合电容,因而改性炭的电容量有明显提高,质量比电容分别高达246.1,198.8 F/g,比原样炭的130.1 F/g分别提高了89.2%、52.8%。  相似文献   

15.
超电容器复合活性炭电极的制备及性能研究   总被引:2,自引:0,他引:2  
用高比表面积活性炭作为原料,酚醛树脂为粘结剂,在120℃高温下粘结成型制备系列超电容器用固体活性炭电极,改变酚醛树脂添加量考察不同炭化温度对复合活性炭电极炭化收率的影响。实验发现,随着炭化温度的提高,复合活性炭电极的炭化收率呈逐渐降低的趋势,炭化温度高于800℃时复合活性炭电极比电容量下降。酚醛树脂掺杂量多时收率降低。另外在酚醛树脂中加入固化剂可提高其炭化收率。不同组成的复合活性炭电极中,微孔活性炭含量大,则比电容量高。  相似文献   

16.
以竹材为原料,在高温Ar保护下制备了高比表面积超级电容器用竹炭材料。用XRD和SEM对所制竹炭进行了物相分析和形貌观察;用循环伏安、恒电流充放电和交流阻抗谱研究了炭化温度对所制超级电容器性能的影响。结果表明:所得竹炭为无定形结构,随着炭化温度的升高,竹炭中石墨微晶向有序态结构发展。炭化温度为500℃时,制备的竹炭电性能最佳。在125mA/g电流密度下的首次放电比电容为226F/g;即使在500mA/g的大电流密度下,其放电比电容仍高达184F/g,第1000次循环时其放电比电容为138F/g,每次循环电容衰减仅为0.046F/g。  相似文献   

17.
Supercapacitors, also known as ultracapacitors are based on porous activated carbon electrodes and on electrostatic charge storage mechanisms. Carbon electrodes are supposed to be chemically and electrochemically inert and the electrostatic nature of the charge storage mechanism is highly reversible. These properties should assure that supercapacitors have an infinite shelf life. But in practice, supercapacitor cells exhibit performances fading when they are used for months. The purpose of this paper is to evaluate the performances fading of supercapacitors during calendar life test which correspond to lower current solicitations than power cycling test. In case of hybrid electric vehicle, which is a key application of ultracapacitors, this ageing test is useful because long rest periods represent a significant time of the vehicle real use. The degradation method of calendar life tests consists in maintaining the cells at high voltage and temperature. A periodic characterization based on impedance spectroscopy is done in order to quantify impedance changes. The obtained results confirm that impedance real part is increasing and the capacitance is decreasing.  相似文献   

18.
制备了沥青焦基活性炭双电层电容器用电极材料,将其分别经水洗、酸洗以及超音速气流粉碎处理。在1 mol/L(C2H5)4NBF4/碳酸丙烯酯电解液体系中进行电化学测试,对比评价了各活性炭前处理方法对电容器电化学性能的影响。结果表明,酸洗后活性炭电极比电容提高7%达到163 F/g,高功率放电性能明显改善,当电流密度由70 mA/g增加到1 A/g时,其电极比电容保持率为88%;活性炭进行超细粉碎后不利于电化学性能的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号