首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mank M  Stahl B  Boehm G 《Analytical chemistry》2004,76(10):2938-2950
The performance of the new ionic liquid MALDI-MS matrix 2,5-dihydroxybenzoic acid butylamine (DHBB) was assessed and compared to results obtained with the ionic liquid MALDI-MS matrixes alpha-cyano-4-hydroxycinnamic acid butylamine (CHCAB), 3,5-dimethoxycinnamic acid triethylamine (SinTri), and the frequently used solid MALDI matrixes 2,5-dihydroxybenzoic acid (DHB) and alpha-cyano-4-hydroxycinnamic acid (CHCA). The vacuum-stable, liquid consistency of ionic liquid matrix sample preparations considerably enhanced MALDI-MS analysis in terms of shot-to-shot reproducibility. Consequently, relative standard deviations serving as a measure for reproducibility of intensity-values acquired from 90 different spots on one MALDI-MS preparation were approximately one-half as high when solid DHB was replaced by the ionic liquid DHBB and eight times lower after exchange of solid CHCA by ionic liquid CHCAB. Interestingly, the ionic liquid MALDI matrix DHBB conserved the broad applicability of its solid analogue DHB, reduced MALDI induced fragmentation of monosialylated glycans and gangliosides, and was the superior ionic liquid matrix for MALDI-MS analysis of oligosaccharides and polymers, such as poly(ethylene glycol). It also worked well with glycoconjugates, peptides, and proteins; however, the tendency of DHBB to form multiple alkali adduct ions with peptides and proteins made CHCAB the ionic liquid matrix of choice for peptides. SinTri was the best ionic liquid matrix for proteins of high molecular weight, such as IgG. Furthermore, it was demonstrated for the first time that solvent properties and MALDI matrix properties of ionic liquids, such as DHBB, can be combined to enable fast, direct screening of an enzymatic reaction. This was proven by the desialylation of sialylactose with sialidase from Clostridium perfringens in the presence of diluted aqueous DHBB and subsequent direct MALDI-MS analysis of the reaction mixture.  相似文献   

2.
卞洁鹏  杨庆浩 《材料导报》2018,32(11):1813-1819
综述了离子液体的种类、合成及纯化方法。离子液体的纯度对其物理化学性质至关重要,是研究其应用的首要问题。本文介绍了离子液体的合成方法,并对比了其优缺点,发现合成方法对离子液体的纯度起着关键作用,指出了影响离子液体纯度的因素,分析对比了离子液体的纯化方法,包括真空干燥、有机溶剂萃取、重结晶、吸附剂法、分子筛法等,根据影响因素种类的不同,优选纯化方法,并对离子液体的发展进行了展望。  相似文献   

3.
Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.  相似文献   

4.
Chiral ionic liquids as stationary phases in gas chromatography   总被引:9,自引:0,他引:9  
Recently, it has been found that room-temperature ionic liquids can be used as stable, unusual selectivity stationary phases. They show "dual nature" properties, in that they separate nonpolar compounds as if they are nonpolar stationary phases and separate polar compounds as if they are polar stationary phases. Extending ionic liquids to the realm of chiral separations can be done in two ways: (1) a chiral selector can be dissolved in an achiral ionic liquid, or (2) the ionic liquid itself can be chiral. There is a single precedent for the first approach, but nothing has been reported for the second approach. In this work, we present the first enantiomeric separations using chiral ionic liquid stationary phases in gas chromatography. Compounds that have been separated using these ionic liquid chiral selectors include alcohols, diols, sulfoxides, epoxides, and acetylated amines. Because of the synthetic nature of these chiral selectors, the configuration of the stereogenic center can be controlled and altered for mechanistic studies and reversing enantiomeric retention.  相似文献   

5.
Choline lactate, an ionic liquid composed of bioderived materials, offers an opportunity to develop biodegradable electrochemical devices. Although ionic liquids possess large potential windows, high conductivity, and are nonvolatile, they do not exhibit electrochemical characteristics such as intercalation pseudocapacitance, redox pseudocapacitance, and electrochromism. Herein, bioderived ionic liquids are developed, including metal ions, Li, Na, and Ca, to yield ionic liquid with electrochemical behavior. Differential scanning calorimetry results reveal that the ionic liquids remained in liquid state from 230.42 to 373.15 K. The conductivities of the ionic liquids with metal are lower than those of the pristine ionic liquid, whereas the capacitance change negligibly. A protocol of the Organization for Economic Co-operation and Development 301C modified MITI test (I) confirms that the pristine ionic liquid and ionic liquids with metal are readily biodegradable. Additionally, an ionic gel comprising the ionic liquid and poly(vinyl alcohol) is biodegradable. An electrochromic device is developed using an ionic liquid containing Li ions. The device successfully changes color at −2.5 V, demonstrating the intercalation of Li ions into the WO3 crystal. The results suggest that the electrochemically active ionic liquids have potential for the development of environmentally benign devices, sustainable electronics, and bioresorbable/implantable devices.  相似文献   

6.
Room-temperature ionic liquids are a class of non-molecular ionic solvents with low melting points. Their properties have the potential to be especially useful as stationary phases in gas-liquid chromatography (GLC). A series of common ionic liquids were evaluated as GLC stationary phases. It was found that many of these ionic liquids suffer from low thermal stability and possess unfavorable retention behavior for some classes of molecules. Two new ionic liquids were engineered and synthesized to overcome these drawbacks. The two new ionic liquids (1-benzyl-3-methylimidazolium trifluoromethanesulfonate and 1-(4-methoxyphenyl)-3-methylimidazolium trifluoromethanesulfonate) are based on "bulky" imidazolium cations with trifluoromethanesulfonate anions. Their solvation characteristics were evaluated using the Abraham solvation parameter model and correlations made between the structure of the cation and the degree to which the ionic liquids retain certain analytes. The new ionic liquids have good thermal stability up to 260 degrees C, provide symmetrical peak shapes, and because of their broad range of solvation-type interactions, exhibit dual-nature selectivity behavior. In addition, the ionic liquid stationary phases provided different retention behavior for many analytes compared to a commercial methylphenyl polysiloxane GLC stationary phase. This difference in selectivity is due to the unique solvation characteristics of the ionic liquids and makes them very useful as dualnature GLC stationary phases.  相似文献   

7.
李博  徐晓婷  郑雪晴 《材料导报》2018,32(23):4116-4124
近年来,离子液体因具有不易挥发、性质稳定、透光性好、导电率高、可设计性,以及易于在界面处形成双电层等物理化学性质,而展现出广阔的应用潜力和前景,逐渐成为国际科学研究的前沿和热点之一。其中,将离子液体应用于染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)、钙钛矿太阳能电池和有机光电探测器等有机光电转换器件的研究备受关注。 在有机光电转换器件中,离子液体在染料敏化太阳能电池方面的应用最为广泛且完善。高效DSSCs主要是基于有机溶剂的液态电解质结,但有机溶剂在带来较高光电转换效率的同时,其本身存在的易挥发汽化、光热稳定性差等缺点,导致DSSCs的器件寿命与长期稳定性受到影响,离子液体的引入能有效解决以上问题。此外,离子液体还以电子传输层以及界面修饰层的形式引入,具有高电荷迁移率、低功函数以及高稳定性等优点,能在一定程度上改善器件的短路电流、填充因子和光电转换效率等。因此,离子液体成为在DSSCs的实际应用中兼具性价比高、封装难度低、性能好、稳定性高四大优点的辅助材料。在钙钛矿太阳能电池方面,离子液体的低功函数和高电子迁移率以及一些特殊性质如钝化反应、黏度效应等,都能够实现对电子萃取率、电荷转移电阻、钙钛矿结晶情况等方面的控制以满足实际设计要求,进而有助于钙钛矿太阳能电池的光电转换效率、填充因子等性能指标不同程度的提升。在有机光电探测器方面,引入的离子液体能促使在与之接触的界面处形成双电层,双电层的形成及离子液体的高导电率使得入射光不必照射有机光电探测器上下电极的重叠区域仍旧可以产生较大的光电流输出,从而可以有效摆脱有机光电探测器对电极材料透光性要求的局限性。同时双电层的形成还将促进有机光电探测器工作层中的电荷分离,进一步提高有机光电探测器的响应率。 本文主要从染料敏化太阳能电池、钙钛矿太阳能电池、有机光电探测器三个方面,综述了离子液体在有机光电转换器件中的国内外应用研究进展,就离子液体对提升有机光电转换效率及其实现器件新功能的工作机理进行了详细分析,并对其未来的应用研究方向进行了展望,为今后进一步设计出更适合有机光电转换领域应用的离子液体提供参考。  相似文献   

8.
磁性离子液体是一种新型的功能化离子液体材料,具有优良的热稳定性、优异的电化学性能、良好的溶解性能以及可回收性等特性,使其在萃取分离、反应催化和复合材料等领域具有较好的应用前景。对目前合成的磁性离子液体做了概述并根据构效关系对主要的磁性离子液体进行了分类。综述了磁性离子液体的主要制备方法,主要有一步合成法、二步合成法和辅助合成法。介绍了磁性离子液体在萃取分离、反应催化及碳纳米管复合材料领域应用研究进展。最后根据磁性离子液体在合成和应用中的不足做了展望。  相似文献   

9.
Stable room-temperature ionic liquids (RTILs) have been used as novel reaction solvents. They can solubilize complex polar molecules such as cyclodextrins and glycopeptides. Their wetting ability and viscosity allow them to be coated onto fused silica capillaries. Thus, 1-butyl-3-methylimidazolium hexafluorophosphate and the analogous chloride salt can be used as stationary phases for gas chromatography (GC). Using inverse GC, one can examine the nature of these ionic liquids via their interactions with a variety of compounds. The Rohrschneider-McReynolds constants were determined for both ionic liquids and a popular commercial polysiloxane stationary phase. Ionic liquid stationary phases seem to have a dual nature. They appear to act as a low-polarity stationary phase to nonpolar compounds. However, molecules with strong proton donor groups, in particular, are tenaciously retained. The nature of the anion can have a significant effect on both the solubilizing ability and the selectivity of ionic liquid stationary phases. It appears that the unusual properties of ionic liquids could make them beneficial in many areas of separation science.  相似文献   

10.
Ionic liquids (ILs) including ambient‐temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture‐sensitive solvents that should be handled in a glove box. After the first synthesis of moisture‐stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid‐like properties, e.g., some ILs enable dissolution of insoluble bio‐related materials and the use as tailor‐made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi‐solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid‐vacuum technologies, such as X‐ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.  相似文献   

11.
Conventional synthesis of inorganic materials relies heavily on water and organic solvents. Alternatively, the synthesis of inorganic materials using, or in the presence of, ionic liquids represents a burgeoning direction in materials chemistry. Use of ionic liquids in solvent extraction and organic catalysis has been extensively studied, but their use in inorganic synthesis has just begun. Ionic liquids are a family of non‐conventional molten salts that can act as templates and precursors to inorganic materials, as well as solvents. They offer many advantages, such as negligible vapor pressures, wide liquidus ranges, good thermal stability, tunable solubility for both organic and inorganic molecules, and much synthetic flexibility. In this Review, the use of ionic liquids in the preparation of several categories of inorganic and hybrid materials (i.e., metal structures, non‐metal elements, silicas, organosilicas, metal oxides, metal chalcogenides, metal salts, open‐framework structures, ionic liquid‐functionalized materials, and supported ionic liquids) is summarized. The status quo of the research field is assessed, and some future perspectives are furnished.  相似文献   

12.
129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.  相似文献   

13.
离子液体作为新颖的"软"功能材料已成为目前研究的新热点。折射率的研究对了解离子液体这种新型光学材料的结构性质具有重要意义。对选取的系列离子液体{[Cnmim]BF4(n=6,8,10,12),[Cnmim]PF6(n=8,10,12),[Cnmim]I(n=7,8,10),[Cnmim]Cl(n=10,12,14),[CnPy]BF4(n=9,11,13)等}在空气中的折射率进行了测试和理论分析,结果表明,(1)若阴离子为BF4-和PF6-,离子液体的折射率随阳离子侧链的增长而线性增加;若阴离子为Cl-和I-,离子液体的折射率随离子液体阳离子侧链的增长而线性减小,相关系数R分别是0.98854、0.98004、0.99942、-0.97888、-0.9793;(2)当阳离子一定时,阴离子体积越大,折射率越小,单元素阴离子比多元素阴离子的离子液体折射率要大;(3)离子液体的折射率随温度升高而减小,卤盐离子液体与四氟硼酸盐和六氟磷酸盐离子液体相比对温度变化更敏感。  相似文献   

14.
Ionic liquids (ILs) are a class of nonmolecular solvents in which the cation/anion combination can be easily tuned to provide desired chemical and physical properties. When used as stationary phases in gas-liquid chromatography, ionic liquids exhibit dual nature retention selectivity. That is, they are able to separate polar molecules such as a polar stationary phase and nonpolar molecules such as a nonpolar stationary phase. However, issues such as optimization of the wetting ability of the ionic liquid on fused-silica capillaries, the maximum operating temperatures of the stationary phases, and nonuniform film thickness on the wall of the capillary at high temperatures have limited their use in gas chromatography. As described in this paper, these limitations are overcome by cross-linking a new class of ionic liquid monomers by free radical reactions to provide a more durable and robust stationary phase. By lightly cross-linking the ionic liquid stationary phase using a small amount of free radical initiator, high-efficiency capillary columns were produced that are able to endure high temperatures with little column bleed. Two types of cross-linked IL stationary phases are developed. A partially cross-linked stationary phase allows for high-efficiency separations up to temperatures of approximately 280 degrees C. However, by creating a more highly cross-linked stationary phase of geminal dicationic ILs, exclusively, an increase in efficiency is observed at high temperatures allowing for its use over 350 degrees C. In addition, through the use of solvation thermodynamics and interaction parameters, it was shown that the cross-linking/immobilization of the ionic liquid does not affect the selectivity of the stationary phase thereby preserving its dual nature retention behavior.  相似文献   

15.
离子液体在聚合物材料加工中的应用   总被引:1,自引:0,他引:1  
由于离子液体具有电导率高、热稳定性好、蒸气压低、不燃烧等优良性质,越来越多地应用于有机合成、分离、电化学和材料加工等领域.综述了离子液体在聚合物材料加工中的应用研究进展,主要包括聚合物电解质的合成应用研究、聚合物在离子液体中的溶解、以离子液体为溶剂的聚合反应以及离子液体作为聚合物的增塑剂.  相似文献   

16.
Zhang J  Bond AM 《Analytical chemistry》2003,75(11):2694-2702
The voltammetry of ferrocene (Fc) and Fc+ in the room-temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM x PF6) has been studied when solid is adhered to glassy carbon or platinum disk electrodes. Due to the slow dissolution kinetics and small diffusion coefficients in the viscous BMIM x PF6 ionic liquid, it is possible to obtain voltammograms of adhered Fc or Fc+ solid that are essentially indistinguishable (except for the current magnitude) from the reversible solution-phase Fc(0/+) process widely employed to provide a reference potential scale. However, the nature of the voltammetry obtained from the adhered solid is governed by the thickness (mass of the solid) of the particle layer. The mechanism proposed to explain the equivalence to solution-phase data involves dissolution at the particle/ionic liquid interface and is supported by electrochemical quartz microbalance measurements and a numerical simulation. Extensive studies on other redox-active solids suggest that voltammograms of solid particles adhered to the electrode surface in contact with ionic liquids frequently exhibit classical behavior associated with solution-phase diffusion-controlled voltammetry. Consequently, the method of adhering microparticles onto an electrode surface can frequently provide an efficient method of establishing ionic liquid solution-phase redox data using extremely small quantities of solid.  相似文献   

17.
Zhao C  Bond AM  Lu X 《Analytical chemistry》2012,84(6):2784-2791
An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product.  相似文献   

18.
Water or aqueous electrolytes are the dominant components in electrowetting on dielectric (EWOD)-based microfluidic devices. Low thermal stability, evaporation, and a propensity to facilitate corrosion of the metal parts of integrated circuits or electronics are drawbacks of aqueous solutions. The alternative use of ionic liquids (ILs) as electrowetting agents in EWOD-based applications or devices could overcome these limitations. Efficient EWOD devices could be developed using task-specific ILs. In this regard, a fundamental study on the electrowetting properties of ILs is essential. Therefore electrowetting properties of 19 different ionic liquids, including mono-, di-, and tricationic, plus mono- and dianionic ILs were examined. All tested ILs showed electrowetting of various magnitudes on an amorphous flouropolymer layer. The effects of IL structure, functionality, and charge density on the electrowetting properties were studied. The enhanced stability of ILs in electrowetting on dielectric at higher voltages was studied in comparison with water. Deviations from classical electrowetting theory were confirmed. The physical properties of ILs and their electrowetting properties were tabulated. These data can be used as references to engineer task-specific electrowetting agents (ILs) for future electrowetting-based applications.  相似文献   

19.
We report on a concept for vapor sensing with the quartz crystal microbalance where the vapor phase is absorbed into small droplets of an ionic liquid. The liquid is contained in the pores of a nanoporous alumina layer, created on the front electrode of the quartz crystal by anodization. Ionic liquids are attractive for vapor sensing because--being liquids--they equilibrate very fast, while at the same time having negligible vapor pressure. Containing the ionic liquids inside cylindrical cavities of a solid matrix removes all problems related to the liquid's softness as well as the possibility of dewetting and flow. The absence of viscoelastic effects is evidenced by the fact that the bandwidth of the resonance remains unchanged during the uptake of solvent vapor. The Henry constants for a number of solvents have been measured.  相似文献   

20.
气凝胶具有三维纳米多孔网络结构,独特的结构使它具有低密度、高比表面积和高孔隙率等性质以及低热导率、低介电常数和低声传播速率等性能,在隔热、介电、隔声、催化、吸附等领域具有广阔的应用前景.然而,溶剂-凝胶法作为目前制备气凝胶最成熟、应用最广的技术,需要使用大量的有机溶剂,严苛而危险的超临界干燥工艺进一步推高了成本,限制了气凝胶的大规模工业化生产和应用,因此,降低成本和在常压干燥条件下制备高比表面积的块状气凝胶是气凝胶产业急需解决的问题.离子液体被称为21世纪的绿色溶剂,具有低蒸气压、低表面张力、高催化性和高溶解性等特殊性质.离子液体与气凝胶材料的发展几乎同步,但直到2000年两种材料才产生交集.离子液体作为模板剂具有微观结构导向作用,使纳米孔结构均一化,其不挥发性和低表面张力保证了老化和常压干燥过程中纳米孔结构不会因毛细管力而坍塌破坏,另外其催化作用可以缩短凝胶时间.因此,离子液体为常压干燥合成气凝胶提供了新的工艺路线.目前,有关借助离子液体制备 SiO2气凝胶、TiO2气凝胶、SiO2-TiO2复合气凝胶、炭气凝胶等无机气凝胶的探索均已展开,其中制备 SiO2气凝胶的研究最多,涉及工艺、微观结构、掺杂和应用等方面.通过常压干燥可获得比表面积高达677 m2/g 的块状气凝胶,通过选用不同的离子液体还可以控制纳米孔的微观形貌,所得 SiO2气凝胶产物在电化学、生物、吸附等领域有较高的应用潜力.利用离子液体替代有机溶剂可以使得到的TiO2气凝胶不经煅烧即含有锐钛矿相,通过金属原子 Ag、Fe、Ge等掺杂改性,可进一步提高锐钛矿相的结晶度,提升其光催化性能.利用离子液体制得的 SiO2-TiO2复合气凝胶具有一定强度和良好的光催化活性.此外,除在传统的溶胶-凝胶法中用作模板剂或催化剂外,离子液体还可作为新型的炭源用于制备炭气凝胶,即通过熔盐法高温炭化裂解离子液体"自上而下"直接制备.这种方法可以制备杂原子在原子水平上均匀分布的功能化炭气凝胶,无需制备有机气凝胶前驱物,极大缩短制备周期,并且炭气凝胶产物的比表面积相对更高,得到了科研界的广泛关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号