首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分别采用埋弧焊和焊条电弧焊方法进行对接接头性能试验,接头经消应力退火后,进行了冷弯、拉伸、冲击韧性试验,并进行了金相组织及断口分析,力图从宏观、微观机理上解读不同工艺方法下焊接接头的性能变化规律,指出2种工艺方法均能满足焊接性能要求,焊条电弧焊力学性能及冲击韧性优于埋弧焊,热影响区的韧性优于焊缝。冲击断口分析表明,埋弧焊接头存在准解理+韧窝混合断裂特征。而焊条电弧焊焊接接头全部为韧窝断裂特征,其抗起裂及抗裂纹扩展性能优于埋弧焊。  相似文献   

2.
邓想  杜伟  公永建 《热加工工艺》2012,41(7):166-167
在分析SA516Gr.65钢的化学成分、力学性能和焊接性的基础上,分别采用焊条电弧焊和埋弧焊焊接试件,对其焊接接头进行了常温拉伸、弯曲和夏比冲击试验。试验结果表明,焊条电弧焊和埋弧焊采用合理的焊接规范时,所得到焊缝的性能都能达到产品的性能指标。  相似文献   

3.
对核岛设备常用低合金钢材料SA-508Gr.3Cl.1锻件的焊接性进行了研究,采用焊条电孤焊和窄间隙埋弧焊的组合焊接工艺对SA-508Gr.3Cl.1厚板进行了焊接,并对焊接接头组织和性能进行了分析,最终获得了强度高、韧性好、无缺陷的优良贝氏体组织焊接接头,解决了SA-508Gr.3Cl.1厚板焊接接头冷裂纹和韧性差的技术难点,为核岛主承压设备壳体的焊接提供了技术保障.  相似文献   

4.
分别采用手工焊条电弧焊和单丝埋弧焊工艺焊接X70管线钢,对其焊接接头进行调质处理,研究焊接方法对调质处理后X70管线钢焊接接头力学性能、组织形貌、大角度晶界密度等的影响。结果表明:手工焊条电弧焊焊缝中心和热影响区的冲击吸收能量远高于单丝埋弧焊焊缝;单丝埋弧焊焊缝和热影响区组织中的粗大贝氏体板条束、大块状铁素体是降低其冲击吸收能量的主要原因,手工焊条电弧焊焊缝组织中的细小且按不同位向错综排列的针状铁素体以及较高的大角度晶界密度是提高其冲击吸收能量的主要原因。  相似文献   

5.
对S460M钢板进行了焊条电弧焊与埋弧焊试验,从试验结果看,S460M钢板在热输入为15~18 kJ/cm的焊条电弧焊与热输入为13~40 kJ/cm的埋弧焊条件下焊接,焊接接头的拉伸性能、弯曲性能和冲击性能良好。试验结果表明,该材料的焊接接头性能优良。  相似文献   

6.
不同焊接方法下316L不锈钢焊接接头组织性能研究   总被引:1,自引:0,他引:1  
采用20%CO2+80%Ar气体保护MAG焊和焊条电弧焊对316L不锈钢进行焊接,通过对焊接接头进行拉伸、弯曲、硬度试验和显微组织观察,研究了焊接接头组织性能。结果表明,焊条电弧焊接头的抗拉强度和显微硬度比MAG焊接头的抗拉强度和显微硬度高;焊条电弧焊焊缝金属中δ铁素体含量比MAG焊焊缝金属中δ铁素体含量高;MAG焊焊缝金属含有少量的MC型碳化物;拉伸时,焊条电弧焊接头断裂在热影响区,而MAG焊接头断裂在焊缝中心位置;焊接接头的弯曲试验均合格。  相似文献   

7.
采用焊条电弧焊、埋弧自动焊和焊接热模拟试验对控轧控冷工艺生产的超低碳贝氏体高强度厚钢板进行了焊接性能研究.结果表明,焊接热影响区具有较小的硬度差异.焊条电弧焊、埋弧自动焊实际焊接接头中热影响区硬度的最大差值小于60HV10,与相同级别低合金高强度钢相比,焊接热影响区强度的均匀性显著提高.焊接热影响区具有高的低温冲击韧性.当焊接热输入为56kJ/cm时,模拟过热区-40℃冲击吸收功可达到60J以上.在焊条电弧焊、埋弧自动焊实际焊接工艺条件下,焊接热影响区的-40℃冲击吸收功可达到100J以上.  相似文献   

8.
B610CF钢焊接接头的组织及性能分析   总被引:1,自引:0,他引:1  
在手工电弧焊和气体保护焊两种焊接方法下,对新开发的调质型低焊接裂纹敏感性低碳贝氏体钢B610CF焊接接头的微观组织和力学性能进行了试验研究.金相分析表明,焊接接头的母材区、焊缝区和热影响区组织均为铁索体和下贝氏体,在铁素体和贝氏体上还弥散分布着渗碳体,说明焊接接头的强度和韧性都较好.拉伸、冲击和弯曲试验表明,焊接接头的抗裂性能好,具有强度高、塑性好、低温韧性和应变失效性能优良的综合力学性能.  相似文献   

9.
800 MPa级高强钢焊接接头组织及力学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
采用焊条电弧焊和气体保护焊两种方法,分别对具有良好抗焊接裂纹敏感性的800 MPa级船体用钢对接接头进行两种工艺的焊接,并对其焊接接头进行显微组织分析和力学性能试验. 结果表明,两种焊接方法焊缝组织主要为交织分布的板条马氏体、贝氏体,以及一定量的针状铁素体,板条间有残余奥氏体,SMAW(焊条电弧焊)焊缝宏观金相可见明显氧化夹杂;两种焊接方法所得焊接接头具有相似的硬度分布,抗拉强度相当,且均断在母材,但SMAW侧弯试验件出现0.5 mm裂纹;?50 ℃下SMAW接头冲击韧性低于GMAW(气体保护焊)接头,SMAW断口由河流花样的准解离小刻面和少量的韧窝组成的撕裂棱构成,属于韧-脆混合断裂,GMAW断口由小且深的韧窝构成,属于典型的韧性断裂.  相似文献   

10.
对货车车钩结构常用的E级低合金高强度铸钢,采用J857T焊条进行手工电弧焊。通过拉伸、弯曲、冲击、硬度测试以及金相分析等,对E级铸钢焊接接头组织形态和力学性能进行了研究。结果表明:采用J857T焊条焊接E级铸钢时,焊接接头具有良好的拉伸、弯曲和冲击性能;其焊缝组织为铁素体、珠光体以及少量的粒状贝氏体混合组织;熔合区组织为铁素体、珠光体组织;热影响区组织为块状铁素体、粒状贝氏体和珠光体;焊接接头显微硬度在225~390HV之间,热影响区出现轻微软化现象。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号