首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热等静压(HIP)工艺连接Al12A12和Ti6Al4V两种不同的航空航天用材料.利用扫描电镜、能谱仪和X射线衍射仪观察连接过渡区的微观组织和组成的演化,并测试其主要的力学性能.结果表明:采用热等静压制备这两种材料的界面连接好;Ti/Al反应层界面处形成了不同的金属间化合物,例如,Al3 Ti、TiAl2和TiAl;连接接头处硬度为163 HV,界面连接处剪切强度达到了23 MPa,比只添加镀层而无中间层的连接强度提高了约17.9%,但低于带有中间层的连接强度.由于过烧和孔隙的形成使得断裂方式是脆性断裂.由此可知,在热等静压成形过程中异种材料的元素发生了相互扩散,在扩散连接处形成了不同的金属间化合物,这些金属间化合物影响连接处的力学性能.   相似文献   

2.
Auger and electron diffraction studies of Al2O3 isolated from a composite prepared by introducing fibers into a vigorously agitated Al−Mg melt indicated the presence of MgAl2O4 on the fiber surface. The evidence suggested that the spinel was present as discrete crystals. The thickness and coverage of the spinel is likely to vary with processing conditions. R. MEHRABIAN formerly with the University of Illinois  相似文献   

3.
对原始状态分别为锻态、固溶态和半时效态的FGH96合金固相扩散连接界面显微组织进行表征,并对连接界面的拉伸性能进行测试,对失效行为进行研究。结果表明,锻态、固溶态和半时效态试样经固相扩散连接后界面均实现了良好的冶金结合,连接界面无孔洞和缝隙等缺陷。锻态试样界面扩散更为充分,组织过渡更为平缓;固溶态和半时效态试样界面存在明显的连接影响区。锻态试样经固相扩散连接和标准热处理后,二次γ?相细小、均匀且呈典型椭球状;固溶态和半时效态试样因固相扩散连接热循环的作用导致γ?相发生长大和分化。二次γ?相尺寸及形貌的不同决定了界面区域性能水平的差异。电子背散射衍射测试结果表明,连接界面处大晶粒的择优取向为{100},距离固相扩散连接界面越近,晶粒的择优取向越明显。拉伸试验结果表明,锻态试样经固相扩散连接和标准热处理后,连接界面处的强度达到基体强度的99%以上。拉伸裂纹主要萌生于连接界面大晶粒及γ?相粗化聚集区域,体现为穿晶的韧窝型断裂。  相似文献   

4.
Al/SiC interfaces were fabricated by diffusion bonding a pure Al foil between two blocks of SiC for temperatures ranging from 500 to 600°C. For samples bonded below 586°C, the interfacial strength was low and TEM speciments could not be fabricated due to separation of the Al and SiC pieces dring thinning. For samples bonded at and above 586°C, a strong bond was formed and conventional and high-resolution transmission electron microscopy revealed the formation of a thin amorphous phase at the interface. Compositional analysis showed that the interfacial phase contained Al, Si, C and O. Formation of the amorphous phase was demonstrated to occur by a solid state reaction and is discussed on the basis of thermodynamic and kinetic considerations. Lastly, some of the advantages of having an amorphous phase at a metal/ceramic interface are discussed.  相似文献   

5.
采用Al-Si5焊丝进行TC4钛/1060铝异质结构的CA-MIG连接,采用SEM、EDS等显微分析手段对不同热输入下所获接头的Ti/Al界面显微组织特点、界面附近元素分布进行分析,研究Ti/Al界面特性随热源热输入变化的演变规律。结果表明,CA-MIG热源热输入对Ti/Al界面显微组织具有显著影响。当热源热输入低于0.91 kJ/cm时,钛与铝基焊缝之间仅形成了一层界面反应层。当热源热输入处于0.91~1.55 kJ/cm时,钛与焊缝之间形成了两种Ti/Al界面,一种为单层结构的齿状Ti(Al,Si)3;另一种由α-Ti(Al,Si)均匀层、Ti5Si3纳米颗粒+Ti(Al,Si)3混合层、齿状Ti(Al,Si)3层3层结构组成。当热源热输入超过1.55 kJ/cm后,除了上述两种Ti/Al界面外,局部微区钛合金发生熔化,与铝基焊缝之间形成了成分复杂的熔合区,熔合区内存在大量的裂纹缺陷。  相似文献   

6.
Structure and phase composition of the Ti-Cu diffusion zone   总被引:1,自引:0,他引:1  
The structure, composition, and kinetics of phase formation in the Ti-Cu system are investigated by metallographic and x-ray microanalytic methods. The diffusion zone of the model system consists of layers of solid solutions and intermetallic compounds, which have different thicknesses and interface structures.Institute of Problems in Materials Science, National Academy of Sciences of Ukraine. Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 3/4(384), pp. 67–70, March–April, 1996. Original article submitted March 9, 1994.  相似文献   

7.
Al 413/Mg couples were prepared by the compound casting process. Characterization of the interface by an optical microscope and scanning electron microscope (SEM) showed that a relatively uniform interface composed of three different layers is formed at the interface. The thickness of the interface depended on the melt/insert volume ratio (VR) significantly and was 80?and 470? ??m? in 1.25?and 3?VRs, respectively. The results of the energy dispersive X-ray spectroscopy (EDS), wavelength dispersive X-ray spectroscopy (WDS), and X-ray diffraction analysis showed that the interface layers are mainly composed of Al3Mg2, Al12Mg17, and Mg2Si intermetallic compounds. An accumulation of magnesium oxide films was detected within the (Al12Mg17?+???) eutectic structure of the interface next to the magnesium base metal. Despite different thicknesses of the interface, shear strengths of the Al 413/Mg couples prepared in 1.25?and 3?VRs were almost same. The study of the fracture surfaces of the Al 413/Mg couples revealed that the accumulated magnesium oxide films act as a weak point for initiation of longitudinal cracks and failure of the joint.  相似文献   

8.
Modification of the interface in SiC/Al composites   总被引:7,自引:0,他引:7  
Methodologies both to avoid the formation of Al4C3 and to tailor the interfacial structures in a SiC/2014 Al composite were demonstrated. Modification of the interfacial structures in the SiC/2014 Al composite was made by forming SiO2 layers on the surfaces of SiC via passive oxidation at elevated temperatures. In the 2014 Al composite reinforced with the oxidized SiC, MgAl2O4 and Si crystals were observed to be present at the interfacial region as a result of the reaction between the SiO2 layer and the matrix. On the other hand, in the case of the 2014 Al composite reinforced with unoxidized SiC, SiC was found to react with the Al matrix to form both Al4C3 and Si. Qualitative measurements of the interfacial bonding strength were carried out on composites having various types of interfaces and thicknesses. Detailed interfacial structures and phase identifications, which were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were presented.  相似文献   

9.
选用稀土Y和采用普通重力铸造法制备原位自生Mg2Si/Al基复合材料,研究不同含量的稀土Y对初生相Mg2Si形貌、尺寸和力学性能的改变.结果表明:稀土Y对Mg2Si/Al复合材料的凝固组织有影响;添加Y处理的Mg2Si/Al基复合材料的Mg2Si颗粒变得更加细小;通过计算二维错配度,发现Y可以作为初生相Mg2Si的异质形核质点从而细化颗粒,同时Y与Al相互作用形成Al3Y相可阻止Mg2Si相长大;此时铸态Mg2Si/Al合金复合材料的力学性能得到改善,其最大抗拉强度和延伸率分别为144 MPa和4.19%.  相似文献   

10.
A new procedure for blending die-cast Mg−Al alloys by semisolid processing to achieve controlled variations in microstructure and properties has been investigated. Granules of AM6-B and AZ91D have been blended in varying proportions and Thixomolded at nominal solid fractions of 0.1 and 0.3, respectively. As-molded microstructures and the role of interdifussion during processing have been analyzed in detail by scanning electron microscopy, transmission electron microscopy, and electron microprobe analysis. Tensile properties and failure modes have been analyzed and a strength model that considers solid solution strengthening of Al in the unmelted particles and a rule-of-mixtures behavior for microstructural components is proposed.  相似文献   

11.
Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.  相似文献   

12.
13.
14.
In the present investigation, wear performance of equal channel angular pressing (ECAP) processed cast Al–Zn–Mg alloys under dry sliding wear conditions was studied against a steel disc. Initially, Al–Zn–Mg alloys (with 5, 10, 15% zinc and 2% magnesium) were ECAP processed. After ECAP, grain size was reduced and enhancement in the hardness was observed. Wear resistance of the alloys increased after ECAP processing. Wear resistance of the alloys also increased when the quantity of the zinc was increased in the alloys. But, wear resistance of all three alloys decreased with increase in the load and the sliding speed. Coefficient of friction of the alloys decreased after ECAP processing. Coefficient of friction of the alloys also decreased when the quantity of the zinc was increased in the alloys. Coefficient of friction of all three alloys increased with increase in the load and the sliding speed. Irrespective of the alloy composition and applied load, worn surfaces of the cast and homogenized samples were composed of plastic deformation, scratches and micro-ploughing. On the other hand, in ECAP processed samples, morphology of the worn surfaces depended on the applied load. Abrasive wear is the main wear mechanism perceived in cast and homogenized samples at all loads. While in ECAP processed samples, the wear mechanism shifted from adhesive and oxidation wear to abrasive wear with increase in the load. Formation of oxide layers on the surface of the sample increased with increase in the ECAP passes. In ECAP processed samples, transfer of iron content from the disc to the sample surface was identified.  相似文献   

15.
Laser welding and laser weld bonding (LWB) Mg to Al joints were obtained in different welding parameters. The penetrations and microstructures of these kinds of joints changed with the increasing of pulse laser power density. Both laser welding and LWB Mg to Al joints with the best properties were obtained in conductive welding mode. In laser welding Mg to Al joint, several intermetallics formed at the bottom of the fusion zone, where some cracks were generated. In laser weld bonding Mg to Al joint, the decomposition of the adhesive caused a baffle effect on the diffusion between the Mg and the Al. The intermetallics formed in the middle of the fusion zone, and the thickness of Mg17Al12 layer was approximately 10 to 20 μm and the Mg2Al3 layer was less than 5 μm, which influenced the property of the joint less.  相似文献   

16.
用TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)预合金粉末和TC11锻件为原料,采用热等静压(hot isostatic pressing,缩写HIP)工艺分别制备粉末净成形件和粉—固扩散连接件,测试、分析其力学性能与断裂方式;同时利用扫描电镜和光学显微镜分析与观察净成形件和连接件的相组成、组织形貌和断口形貌。结果表明:TC11粉末净成形件的抗拉强度、屈服强度、伸长率和断面收缩率分别为1 089 MPa、1 017 MPa、19.5%和23%;净成形件与粉—固扩散连接件的断裂方式均为韧性断裂;TC11粉末热等静压后颗粒内部的微观组织主要是网篮组织,颗粒界面区域为双态组织和魏氏组织,TC11锻件的微观组织主要是等轴组织;粉-固扩散连接的接头强度高于锻件。  相似文献   

17.
复合材料Al/Al4C3/Al2O3的组织结构与力学性能   总被引:3,自引:0,他引:3  
采用机械合金化(MA)球磨和热压烧结工艺制备了复合材料Al/Al4C3/Al2O3,对其组织结构和力学性能进行了研究。结果表明,发育良好的Al4C3棒状单晶体和等轴状γAl2O3均匀分布在铝晶界或晶粒内部,二者体积含量约为66v%。Al/Al4C3和Al/Al2O3界面洁净,为直接的原子结合,但不存在确定的位向关系。复合材料的室温、高温强度及刚度比粉末冶金纯铝(P/MAl)显著提高。  相似文献   

18.
以Ag Cu Ti合金粉末为过渡层,采用扩散连接法对石墨与铜进行扩散连接实验。利用X射线衍射仪、扫描电镜、金相显微镜及万能材料实验机对连接界面的性能及微观形貌进行研究。研究结果表明:在工艺参数为870℃/200 k Pa/10 min的条件下可实现石墨-Cu连接,其接头界面组织结构为石墨/Ti C/铜基固溶体+富银区/铜;接头剪切强度为17 MPa,断裂在石墨母材;并分析了石墨/Ag-Cu-Ti/铜真空加压烧结接头的形成机理。  相似文献   

19.
20.
采用先进电子显微术在原子尺度研究了(001)单晶SrTiO3衬底上生长的纳米复合薄膜0.65BiFcO3-0.35CoFe2O4的组织形态以及界面结构.BiFeO3(BFO)和CoFe2O4(CFO)两相在外延生长过程中自发相分离,形成自组织的复合纳米结构.磁性尖晶石CFO呈方块状均匀分布于铁电钙钛矿BFO基体中,并沿[001)1]方向外延生长,形成垂直的柱状纳米结构.两相具有简单的立方-立方取向关系,即[001]BFO//[001]CFO和(100)BFO//(100)CFO,且界面为{110}晶面.薄膜表面起伏不平,形成CFO{111}小刻面而BFO则为平整的(001)表面.能谱分析结果表明各相成分均匀分布并无明显的元素互扩散发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号