首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a quantum step in further cost reduction, the multilevel cell concept has been combined with the NAND flash memory. Key requirements of mass storage, low cost, and high serial access throughput have been achieved by sacrificing fast random access performance. This paper describes a 128-Mb multilevel NAND flash memory storing 2 b per cell. Multilevel storage is achieved through tight cell threshold voltage distribution of 0.4 V and is made practical by significantly reducing program disturbance by using a local self-boosting scheme. An intelligent page buffer enables cell-by-cell and state-by-state program and inhibit operations. A read throughput of 14.0 MB/s and a program throughput of 0.5 MB/s are achieved. The device has been fabricated with 0.4-μm CMOS technology, resulting in a 117 mm2 die size and a 1.1 μm2 effective cell size  相似文献   

2.
Emerging application areas of mass storage flash memories require low cost, high density flash memories with enhanced device performance. This paper describes a 64 Mb NAND flash memory having improved read and program performances. A 40 MB/s read throughput is achieved by improving the page sensing time and employing the full-chip burst read capability. A 2-μs random access time is obtained by using a precharged capacitive decoupling sensing scheme with a staggered row decoder scheme. The full-chip burst read capability is realized by introducing a new array architecture. A narrow incremental step pulse programming scheme achieves a 5 MB/s program throughput corresponding to 180 ns/Byte effective program speed. The chip has been fabricated using a 0.4-μm single-metal CMOS process resulting in a die size of 120 mm2 and an effective cell size of 1.1 μm2  相似文献   

3.
A 512-Mb flash memory, which is applicable to removable flash media of portable equipment such as audio players, has been developed. The chip is fabricated with a 0.18-μm CMOS process on a 126.6-mm2 die, and uses a multilevel technique (2 bit/1 cell). The memory cell is AND-type, which is suitable for multilevel operation. This paper reports new techniques adopted in the 512-Mb flash memory. First, techniques for low voltage operation are described. The charge pump, control of pumps, and the reference voltage generator are improved to generate internal voltage stably for multilevel flash memory. Next, a method for reducing total memory cost in the removable flash media is described. A new operation mode named read-modify-write is introduced on the chip. This feature makes the memory system simple, because the controller does not have to track sector-erase information  相似文献   

4.
A 3.3-V 16-Mb nonvolatile memory having operation virtually identical to DRAM with package pin compatibility has been developed. Read and write operations are fully DRAM compatible except for a longer RAS precharge time after write. Fast random access time of 63 ns with the NAND flash memory cell is achieved by using a hierarchical row decoder scheme and a unique folded bit-line architecture which also allows bit-by-bit program verify and inhibit operation. Fast page mode with a column address access time of 21 ns is achieved by sensing and latching 4 k cells simultaneously. To allow byte alterability, nonvolatile restore operation with self-contained erase is developed. Self-contained erase is word-line based, and increased cell disturb due to the word-line based erase is relaxed by adding a boosted bit-line scheme to a conventional self-boosting technique. The device is fabricated in a 0.5-μm triple-well, p-substrate CMOS process using two-metal and three-poly interconnect layers. A resulting die size is 86.6 mm2, and the effective cell size including the overhead of string select transistors is 2.0 μm2  相似文献   

5.
Application of multilevel cell (MLC) technology to a flexible read-while-write flash memory has been achieved through the use of a highly optimized sensing architecture. The goal of this implementation is to provide performance on par with single-bit-per-cell implementations while significantly reducing the overall die size. In order to achieve the required high-speed operation using MLC structures, all offsets to the sense amplifier were minimized and the column load and local sense amplifier were optimized to provide ample differential gain. Through the use of these optimization techniques, a 1.8-V MLC-based flexible read-while-write memory with 125-MHz continuous burst and 40-ns random read access time has been manufactured. Using a 0.13-/spl mu/m technology, this new device provides a die size that is 25% of the size of the equivalent single-bit-per-cell device manufactured on a 0.18-/spl mu/m technology.  相似文献   

6.
This paper demonstrates the first 8-Mb chain ferroelectric RAM (chain FeRAM) with 0,25-μm 2-metal CMOS technology. A small die of 76 mm2 and a high average cell/chip area efficiency of 57.4 % have been realized by introducing not only chain architecture but also four new techniques: 1) a one-pitch shift cell realizes small cell size of 5.2 μm2; 2) a new hierarchical wordline architecture reduces row-decoder and plate-driver areas without an extra metal layer; 3) a small-area dummy cell scheme reduces dummy capacitor size to 1/3 of the conventional one; and 4) a new array activation scheme reduces dataline and second amplifier areas. As a result, the chain architecture with these new techniques reduces die size to 65% of that of the conventional FeRAM. Moreover a ferroelectric capacitor overdrive scheme enables sufficient polarization switching, without overbias memory cell array. This scheme lowers the minimum operation voltage by 0.23 V, and enables 2.5-V Vdd operation. Thanks to fast cell plateline drive of chain architecture, the 8-Mb chain FeRAM has achieved the fastest random access time, 40 ns, and read/write cycle time, 70 ns, at 3.0 V so far reported  相似文献   

7.
This paper presents a 3-V-only 64-Mb 4-level-cell (2-b/cell) NOR-type channel-hot-electron (CHE) programmed flash memory fabricated in 0.18-μm shallow-trench isolation CMOS technology. The device (die size 40 mm2) is organized in 64 1-Mb sectors. Hierarchical column and row decoding ensures complete isolation between different sectors during any operation, thereby increasing device reliability while still providing layout area optimization. Staircase gate-voltage programming is used to achieve narrow threshold-voltage distributions. The same program throughput as for bilevel CHE-programmed memories is obtained, thanks to parallel programming. A mixed balanced/unbalanced sensing approach allows efficient use of the available threshold window. Asynchronous (130-ns access time) and burst-mode (up to 50-MHz data rate) reading is possible. Both column and row redundancy is provided to ensure extended failure coverage. Error correction code techniques, correcting 1 failed over 32 data cells, are also integrated  相似文献   

8.
A 29-mm2, 16-Mb divided bitline NOR (DINOR) flash memory is fabricated using 0.25-μm triple-well three-layer-metal CMOS technology. Read access time is 72 ns at 1.8 V. A poly diode charge-pump technique improves pump efficiency and eliminates the body effect problem  相似文献   

9.
This paper presents, for the first time, a 4-Mb ferroelectric random access memory, which has been designed and fabricated with 0.6-μm ferroelectric storage cell integrated CMOS technology. In order to achieve a stable cell operation, novel design techniques robust to unstable cell capacitors are proposed: (1) double-pulsed plate read/write-back scheme; (2) complementary data preset reference circuitry; (3) relaxation/fatigue/imprint-free reference voltage generator; (4) open bitline cell array; (5) unintentional power-off data protection scheme. Additionally, to improve cell array layout efficiency a selectively driven cell plate scheme has been devised. The prototype chip incorporating these circuit schemes shows 75 ns access time and 21-mA active current at 3.3 V, 25°C, 110-ns minimum cycle. The die size is 116 mm2 using 9 μm2, one-transistor/one-capacitor-based memory cell, twin-well, single-poly, single-tungsten, and double-Al process technology  相似文献   

10.
Fast and accurate read operation in 1.8-V 2-bit-per-cell virtual-ground flash memories requires techniques to substantially reduce the read margin loss due to the side-leakage current and the complementary-bit disturbance. The read margin loss caused by the combination effect of these two disturbance mechanisms is serious enough to eliminate the read margin window, which is already small when the power supply voltage is about 1.8 V and when a memory cell stores 2 bits. This paper introduces for the first time the sense current recovery technique to counteract the side-leakage current effect and the differential feedback cascoded bitline control technique to minimize the complementary-bit disturbance. A 1.8-V 256-Mb 2-bit-per-cell virtual-ground flash memory employing the two techniques has been integrated using 0.13-/spl mu/m CMOS technology. These two sensing techniques are essential for the memory to achieve 49-ns initial read access and 200-MHz internal burst read access. The die size is 52 mm/sup 2/ and the cell size is 0.121 /spl mu/m/sup 2/.  相似文献   

11.
The highest bit-density 64-Mb NOR flash memory with dual-operation function of 44 mm/sup 2/ was developed by introducing negative-gate channel-erase NOR flash memory cell technology, 0.16-/spl mu/m CMOS flash memory process technology, and four-bank hierarchical word-line and bit-line architecture. The chip has flexible block redundancy for high yield, a fast accurate word-line voltage controller for a fast erasing time of 0.5 s, and an eight-word page-read access capability for high read performance of an effective access time of 30 ns at a wide supply voltage range of 2.3-3.6 V.  相似文献   

12.
A 256-Mb flash memory is fabricated with a 0.25-μm AND-type memory cell and 2-bit/cell multilevel technique on a 138.6-mm2 die. Parallel decoding of four memory threshold voltage levels to 2-bit logical values prevents throughput degradation due to multilevel operation. This parallel decoding has been achieved by sense latches and data latches connected to each bitline. Tight distribution of memory cell threshold voltage is essential to reliable multilevel operation. This chip has several measures to deal with the factors that widen the memory cell Vth. The effect of adjacent memory cell's Vth is eliminated by using an AND-type flash memory cell. An initial distribution width of 0.1 V is achieved. The wordline voltage, which has negative temperature dependency, compensates the positive dependency of memory cell Vth. In the -5-75°C range, memory threshold Vth deviation is reduced from the conventional 0.19-0.07 V. Conventionally, the number of programs without erase operation per one sector is limited by the limitations from program disturb. This chip introduced a new rewrite scheme, and this limit is increased from the conventional 10-2048+64 times/sector  相似文献   

13.
This paper describes the circuit technologies and the experimental results for a 1 Mb flash CAM, a content addressable memory LSI based on flash memory technologies. Each memory cell in the flash CAM consists of a pair of flash memory cell transistors. Additionally, four new circuit technologies have been developed: a small-size search sense amplifier; a highly parallel search management circuit; a high-speed priority encoder; and word line/bit line redundancy circuits for higher production yields. A cell size of 10.34 μm2 and a die size of 42.9 mm2 have been achieved with 0.8 μm design rules. Read access time and search access time are 115 ns and 135 ns, respectively, with a 5 V supply voltage. Power dissipation in 3.3 MHz operations is 210 mW in read and 140 mW in search access  相似文献   

14.
A novel architecture that enables fast write/read in poly-PMOS load or high-resistance polyload single-bit-line cells is developed. The architecture for write uses alternate twin word activation (ATWA) with bit-line pulsing. A dummy cell is used to obtain a reference voltage for reading. An excellent balance between a normal cell signal line and a dummy cell signal line is attained using balanced common data-line architecture. A newly developed self-bias-control (SBC) sense amplifier provides excellent stability and fast sensing performance for input voltages close to VCC at a low power supply of 2.5 V. The single-bit-line architecture is incorporated in a 16-Mb SRAM, which was fabricated using 0.25-μm CMOS technology. The proposed single-bit-line architecture reduces the cell area to 2.3-μm2 , which is two-thirds of a conventional two-bit-line cell with the same processes. The 16-Mb SRAM, a test chip for a 64-Mb SRAM, shows a 15-ns address access time and a 20-ns cycle time  相似文献   

15.
This paper describes a 256 Mb DRAM chip architecture which provides up to ×32 wide organization. In order to minimize the die size, three new techniques: an exchangeable hierarchical data line structure, an irregular sense amp layout, and a split address bus with local redrive scheme in the both-ends DQ were introduced. A chip has been developed based on the architecture with 0.25 μm CMOS technology. The chip measures 13.25 mm×21.55 mm, which is the smallest 256 Mb DRAM ever reported. A row address strobe (RAS) access time of 26 ns was obtained under 2.8 V power supply and 85°C. In addition, a 100 MHz×32 page mode operation, namely 400 M byte/s data rate, in the standard extended data output (EDO) cycle has been successfully demonstrated  相似文献   

16.
We report a fast-programming, compact sense and latch (SL) circuit to realize an eight-level NAND flash memory. Fast programming is achieved by supplying optimized voltage and pulsewidth to the bit lines, according to the programming data. As a result, all data programming is completed almost simultaneously, and 0.67-MB/s program throughput, which is 1.7 times faster than conventional program throughput, is achieved. The compact layout of the SL circuit is made possible by four 3-bit latches sharing one unit of the read/verify control circuit. Using these techniques, we fabricated a 144-Mb, eight-level NAND flash memory using a 0.35-μm CMOS process, resulting in a 104.2-mm2 die size and a 1.05-μm2 effective cell size  相似文献   

17.
A 5-V-only 16-Mb CMOS flash memory with sector erase mode is described. An optimized memory cell with diffusion self-aligned drain structure and channel erase are keys to achieving 5-V-only operation. By adopting this erase method and row decoders to apply negative bias, 512-word sector erase can be realized. The auto chip erase time of 4 s has been achieved by adopting 64-b simultaneous operation and improved erase sequence. The cell size is 1.7 μm×2.0 μm and the chip size is 6.3 mm×18.5 mm using 0.6-μm double-layer metal triple-well CMOS technology  相似文献   

18.
To improve the performance of high-density flash memories, several circuit technologies have been developed. A word-line boost and clamp scheme realizes low supply voltage read operations. A flash programming scheme utilizing Fowler-Nordheim (F-N) tunneling for programming before erasure and a negative gate biased erasing scheme accomplish low-power, high-speed, and 5-V-only erase operations. The chip size penalty is estimated to be only 3% for the 16-Mb flash memories  相似文献   

19.
An internal erase and erase-verify control system has been implemented in an electrically erasable, reprogrammable, 80-ns 1-Mb flash memory, which is suitable for in-system reprogram applications. The memory utilizes a one-transistor type cell with a cell area of 10.4 μ2. The die area is 32.3 mm2. An erase mode is initiated by a 50-ns pulse. An erase and erase-verify sequence is automatically conducted in a chip without any further external control. The internal status can be checked through a status-polling mode. The 80-ns access time results from advanced sense amplifiers as well as low-resistance polysilicide word lines and scaled periphery transistors. To realize high-sensitivity, high-speed sense circuits, a pMOS transistor (whose gate is connected to its drain) is used as a load transistor  相似文献   

20.
A 10-b current steering CMOS digital-to-analog converter (DAC) is described, with optimized performance for frequency domain applications. For sampling frequencies up to 200 MSample/s, the spurious free dynamic range (SFDR) is better than 60 dB for signals from DC to Nyquist. For sampling frequencies up to 400 MSample/s, the SFDR is better than 55 dB for signals from DC to Nyquist. The measured differential nonlinearity and integral nonlinearity are 0.1 least significant bit (LSB) and 0.2 LSB, respectively. The circuit is fabricated in a 0.35-μm, single-poly, four-metal, 3.3 V, standard digital CMOS process and occupies 0.6 mm2. When operating at 500 MSample/s, it dissipates 125 mW from a 3.3 V power supply. This DAC is optimized for embedded applications with large amounts of digital circuitry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号