共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于对象的菱表搜索运动估计方法 总被引:5,自引:0,他引:5
MPEG-4是一个基于对象的视频标准,其运动估计方法不同于其他视频标准,本文提出一种基于对象的菱形搜索运动估计算法,利用图像分割信息和运动矢量的相关性,减少了得到运动矢量所需要的平均搜索点数,实验结果表明,在降低计算复杂度的同时,本算法保持了较好的图像质量。 相似文献
3.
在视频编码中 ,基于块的运动估计算法被广泛应用 .在保证估计质量的前提下 ,为了降低运动估计算法的搜索次数 ,提出了一种对于不同类型的块采用不同的搜索范围和搜索步骤的分类快速搜索 (CFS)运动估计新算法 .该算法首先对块进行分类 ,然后确定其搜索范围和搜索步骤 ,在应用分类搜索法时 ,根据运动矢量的中心偏置特性 ,将第 1步和第 2步的搜索窗采用 5× 5的窗口 ,第 3步采用 3× 3的窗口 .结果表明 ,该分类快速搜索新算法在运动矢量的估计质量上 ,明显优于传统三步搜索法 ,且搜索次数与传统三步搜索法相比 ,降低了 2 3% ,与全搜索法相比 ,降低了 91% .实验结果证明 ,该算法尤其适用于快速运动、复杂运动序列的运动估计 .与传统的全搜索法和三步搜索法相比 ,其更适合于用硬件实现 . 相似文献
4.
为更加有效地提高运动估计速度,提出一种自适应动态搜索范围运动估计算法,从后续快速运动估计算法的运动矢量预测集中自适应地选择与当前编码块相关性最强的运动矢量预测值作为搜索范围的中心点,根据预测集中运动矢量预测值的大小、方向自适应地决定水平、垂直及正负方向的非对称搜索范围。将该算法融合到UMHexagonS和FFS算法中进行广泛的实验测试,结果表明其能在基本保持重建图像质量的同时,至少分别减少运动估计运算量的22.13%和76.57%。 相似文献
5.
提出了3种运动估计快速半象素级搜索方法。实验分析表明这3种方法具有较好的MSE性能和解码图象质量;3种快速方法中最慢的可以节省约29.17%运算次数,最快的可节省近58.33%运算次数。本文所提出的快速方法可作为运动估计单元中半象素级搜索实时实现的候选算法。 相似文献
6.
为了降低快速运动估计的计算复杂度,避免小菱形搜索算法带来的局部最优点问题,提出了自适应搜索模板的估计算法.该算法在搜索时根据SAD值的变化快慢和相邻帧之间时间相关性自适应选择搜索模板.实验表明,使用该算法编码,码流大小与使用菱形搜索算法和六边形搜索算法差距为±0.6%,搜索点数为菱形算法的72%~77%,六边形算法的83%~86%.在减少搜索点数的情况下有效地避免了局部最优点问题. 相似文献
7.
提出了一种基于搜索距的快速运动搜索算法。该算法采用多个初始预测候选运动矢量集进行运动估计,通过对与该宏块时空域相邻宏块的搜索距来预测当前宏块的搜索距,根据当前宏块搜索距和块失真特性统计的不同动态采用不同的搜索模板。模拟试验表明:提出算法能获得更好的视频质量,拥有良好的搜索速度伸缩性,优于传统的PMVFAST算法。 相似文献
8.
针对视频编码中运动估计算法运算复杂的问题,研究了一种提前终止准则和多模板快速搜索算法相结合的优化算法;该算法基于混合非对称十字多六边形搜索(UMHexagonS)算法,结合现有视频编码标准,首先对满足提前终止准则的当前块及时终止起始点搜索,然后采用非均匀多六边形部分搜索模板和六边形与小十字形相结合的并行搜索模板,分别对非均匀多六边形搜索和扩展的六边形搜索两方面做了优化;实验结果表明,该算法在保证视频质量的情况下,没有增加码率,且有效地节省了运动估计时间(约28%),降低了算法的复杂度。 相似文献
9.
为了减小快速运动估计算法的计算复杂度和改善运动补偿的性能,提出了一种基于菱形搜索(DS)和自适应十字模式搜索(ARPS)两种方法混合使用的块匹配算法。该算法利用DS算法搜索精度高和ARPS算法搜索速度快的特点,综合固定模式搜索和空间相关搜索两方面的优点,对于相邻两帧图像中的不变宏块采用零运动预先判断以减少算法的计算量,并利用运动矢量的空间一致性提高预测运动矢量的质量。实验结果表明,该算法与ARPS算法相比,在保证搜索精度的同时,计算复杂度至少减小了20%。 相似文献
10.
本文在连续消除算法和多阶连续消除算法的基础上提出了一种自适应的快速全搜索运动估计算法,进一步的降低了视频编码中全搜索运动估计的计算需求,并且运动估计的精度和全搜索算法完全一样.实验结果表明,该算法在SEA和MSEA的基础上又进一步的降低了15%~27%的计算需求,并且该算法可以和其他的任何一种快速运动估计算法相结合来减少视频编码的计算量及其VLSI的功耗. 相似文献
11.
12.
提出了一种新的基于运动矢量场、方向自适应和半像素搜索的快速搜索算法(M-DAHS)。该算法根据图像序列运动矢量场的中心偏置性和时空相关性进行预判,对静止块设定阈值直接终止搜索;非静止块根据运动类型自适应选择搜索起始点和搜索策略。搜索模板具有很强的方向自适应性,对于小运动块采用菱形-线性搜索,其他块使用六边形-菱形搜索算法。整像素搜索完毕后,再以十字优先原则进行半像素搜索。实验结果表明,该算法性能优越,搜索速度快,搜索精度高,且搜索精度可以非常接近全搜索算法。 相似文献
13.
14.
Gradient-based algorithms for global motion estimation are effective in many image-processing tasks. However, when analytical
estimation of derivatives of objective function is not possible, linear search based algorithms such as Powell perform better
than the gradient-based ones. In this paper we propose global motion estimation algorithm that exploits linear search based
algorithm, particularly Powell, instead of commonly used gradient-based one. We also introduce a new approach for extracting
global motion parameters called Two Step Powell-based GME. Using this approach we further improve the Powell-based GME. The
proposed Powell-based GME outperforms Gauss–Newton algorithm (gradient-based) in terms of PSNR. The proposed Two Step Powell
GME algorithm outperforms Powell-based GME in terms of PSNR and computational time. 相似文献
15.
16.
一种综合搜索策略的快速运动估计算法* 总被引:2,自引:0,他引:2
提出了一种综合搜索策略的运动估计算法。该算法首先采用中值预测提前终止判断策略,然后基于块运动类型确定搜索起点,最后采用小十字模板与基于块的梯度下降搜索法(BBGDS)相结合的方法进行局部搜索。搜索过程中多处引入提前终止策略,进一步提高搜索速度。通过与综合性能代表当前国际先进水平的运动矢量场自适应搜索法(MVFAST)进行对比实验发现,该算法在基本保持搜索精度的情况下,有效提高了搜索速度,对于运动较大序列速度提高尤为明显,可以达到20%48%。 相似文献
17.
18.
Erik Cuevas 《Applied Intelligence》2013,39(1):165-183
Motion estimation is one of the major problems in developing video coding applications. Among all motion estimation approaches, Block-matching (BM) algorithms are the most popular methods due to their effectiveness and simplicity for both software and hardware implementations. A BM approach assumes that the movement of pixels within a defined region of the current frame can be modeled as a translation of pixels contained in the previous frame. In this procedure, the motion vector is obtained by minimizing a certain matching metric that is produced for the current frame over a determined search window from the previous frame. Unfortunately, the evaluation of such matching measurement is computationally expensive and represents the most consuming operation in the BM process. Therefore, BM motion estimation can be viewed as an optimization problem whose goal is to find the best-matching block within a search space. The simplest available BM method is the Full Search Algorithm (FSA) which finds the most accurate motion vector through an exhaustive computation of all the elements of the search space. Recently, several fast BM algorithms have been proposed to reduce the search positions by calculating only a fixed subset of motion vectors despite lowering its accuracy. On the other hand, the Harmony Search (HS) algorithm is a population-based optimization method that is inspired by the music improvisation process in which a musician searches for harmony and continues to polish the pitches to obtain a better harmony. In this paper, a new BM algorithm that combines HS with a fitness approximation model is proposed. The approach uses motion vectors belonging to the search window as potential solutions. A fitness function evaluates the matching quality of each motion vector candidate. In order to save computational time, the approach incorporates a fitness calculation strategy to decide which motion vectors can be only estimated or actually evaluated. Guided by the values of such fitness calculation strategy, the set of motion vectors is evolved through HS operators until the best possible motion vector is identified. The proposed method has been compared to other BM algorithms in terms of velocity and coding quality. Experimental results demonstrate that the proposed algorithm exhibits the best balance between coding efficiency and computational complexity. 相似文献
19.
Ching-Yeh Chen Yu-Wen Huang Chia-Lin Lee Liang-Gee Chen 《Multimedia, IEEE Transactions on》2006,8(4):698-706
A computation-aware motion estimation algorithm is proposed in this paper. Its goal is to find the best block-matching results in a computation-limited and computation-variant environment. Our algorithm is characterized by a one-pass flow with adaptive search strategy. In the prior scheme, Tsai et al. propose that all macroblocks are processed simultaneously, and more computation is allocated to the macroblock with the largest distortion among the entire frame in a step-by-step fashion. This implies that random access of macroblocks is required, and the related information of neighboring macroblocks cannot be used to be prediction. The random access flow requires a huge memory size for all macroblocks to store the up-to-date minimum distortions, best motion vectors, and searching steps. On the contrary, our one-pass flow processes the macroblocks one by one, which can not only significantly reduce the memory size but also effectively utilize the context information of neighboring macroblocks to achieve faster speed and better quality. Moreover, in order to improve the video quality when the computation resource is still sufficient, the search pattern is allowed to adaptively change from diamond search to three step search, and then to full search. Last but not least, traditional block matching speed-up methods are also combined to provide much better computation-distortion curves. 相似文献
20.
由于对编码的高精度和低复杂度的要求,H.264视频编码标准已经采用了UMHexagonS算法作为其可行的块运动估计实施方案。提出了一种新的UMHexagonS改进算法,改进主要在三个方面:第一,增加了一个新的初始预测矢量,以避免过早陷入局部最优;第二,一个小八边形搜索和两个后续的小菱形搜索取代了UMHexagonS算法中的5×5全搜索,这在一定程度上减少了计算量;第三,多八边形格点搜索取代了多六边形格点搜索,这不仅减轻了运算量负担,也在方向上能更好更快地搜索到最佳运动矢量。实验结果表明,所提出的方法不仅能保证UMHexagonS算法的编码效果,同时还能减少5%~10%的运算量,从而节省编码时间。 相似文献